Design of Poly(2,7-Carbazole) Derivatives
A R T I C L E S
new polymers have been developed to better harvest the solar
spectrum, especially in the 1.4-1.9 eV region. Several low band
gap polythiophene derivatives have been reported by Krebs24-26
and Reynolds,27,28 but until now, relatively low performances
in solar cells have been obtained. Polyfluorene derivatives29-32
show promising features with power conversion efficiencies
(PCE) between 2.0 and 4.2%. However, these polymers show
relatively low carrier mobility, limiting the device performances.
Recently, benzothiadiazole and cyclopentadithiophene copoly-
mers showed very interesting PCE values (3.2-5.5%)33,34 and
be below the air oxidation threshold (ca. -5.27 eV or 0.57 V
vs SCE).45 Furthermore, this relatively low value assures a
relatively high open circuit potential (VOC) in the final device.
Second, the LUMO energy level of the polymer must be
positioned above the LUMO energy level of the acceptor (i.e.,
[6,6]-Phenyl C61 butyric acid methyl ester (PCBM)) by at least
0.2-0.3 eV to ensure efficient electron transfer from the polymer
to the acceptor.46,47 Therefore, the ideal donor LUMO energy
level should be between -3.7 and -4.0 eV. Finally, the optimal
band gap, considering the solar emission spectrum and the open
circuit potential of the resulting solar cell, should range between
1.2 and 1.9 eV. Therefore, the ideal polymer HOMO energy
level should range between -5.2 and -5.8 eV. Taking into
account the LUMO energy level of PCDTBT (-3.60 eV), one
needs to reduce this parameter to further increase the perfor-
mance of a polymeric cell while keeping the HOMO energy
level within the same energy value (i.e., -5.45 eV).
On the basis of these initial data and theoretical models, we
investigated several alternating polymeric structures to develop
the most suitable poly(2,7-carbazole) derivatives for BHJ solar
cell devices.12,27,44 To estimate the polycarbazole performances
using those models, we performed quantum calculations on the
repeat unit of the planned polymers to determine both the
HOMO and LUMO energy levels. These values were then
compared to the experimental values of the polymers. These
new polymers were tested in solar cell devices, and their
performances were analyzed in terms of polymer organization,
molecular weight, charge carrier mobility, and LUMO energy
level.
high carrier mobility (10-2-10-1 cm2‚V-1‚s-1 33,35
demonstrat-
)
ing that one can synthesize ICT polymers having low band gap
and high carrier mobility.
Poly(2,7-carbazole) derivatives are other excellent potential
candidates for BHJ solar cells. Indeed, as observed with poly-
(2,7-fluorene)s,36,37 the physical properties of poly(2,7-carba-
zole)s38 can be easily modulated. As an electron-rich mole-
cule,38-40 the carbazole unit is perfect for the development of
ICT polymers. Moreover, poly(N-vinylcarbazole) (PVK) is
among the best photoconductive polymeric materials.39 Initial
studies by K. Mu¨llen41 and our group42 have produced poly-
carbazole materials that exhibit relatively low efficiency in solar
cells (0.6-0.8%). In general, those polymers were poorly soluble
and showed a lack of organization. However, we recently
reported a new polycarbazole derivative (PCDTBT)43 bearing
a secondary alkyl side chain on the nitrogen atom of the
carbazole unit that shows high solubility and some organization,
resulting in a very good PCE (3.6%). It was concluded that, by
improving the electronic properties of the polymeric materials,
much higher efficiencies could be reached.
2. Results and Discussion
Recently, several models have been proposed to estimate the
polymer performance in BHJ solar cells.12,27,44 First, the polymer
must be air-stable; therefore, the HOMO energy level needs to
2.1. Theoretical Calculations. Predicting the behavior of both
the HOMO and LUMO energy levels for new polymers is
crucial to make a rational design of optimized BHJ solar cells.
Recently, semiempirical calculations (MNDO) have been suc-
cessfully applied on several similar low band gap fluorene
derivatives.48 In the present work, we have estimated the HOMO
and LUMO energy levels of the repetitive units of the corre-
sponding alternating copolymers by using the density functional
theory (DFT) as approximated by the B3LYP functional and
employing the 6-31G* basis set. The computational methodol-
ogy is described in the Supporting Information. DFT/B3LYP/
6-31G* has been found to be an accurate formalism for
calculating the structural and optical properties of many
molecular systems.49-55
(21) Mullekom, H. A. M. v.; Vekemans, J. A. J. M.; Havinga, E. E.; Meijer, E.
W. Mater. Sci. Eng., R. 2001, 32, 1-40.
(22) Ajayaghosh, A. Chem. Soc. ReV. 2003, 32, 181-191.
(23) Roncali, J. Macromol. Rapid Commun. 2007, 28, 1761-1775.
(24) Petersen, M. H.; Hagemann, O.; Nielsen, K. T.; Jorgensen, M.; Krebs, F.
C. Sol. Energy Mater. 2007, 91, 996-1009.
(25) Bundgaard, E.; Krebs, F. C. Sol. Energy Mater. 2007, 91, 1019-1025.
(26) Bundgaard, E.; Krebs, F. C. Macromolecules 2006, 39, 2823-2831.
(27) Thompson, B. C.; Kim, Y. G.; Reynolds, J. R. Macromolecules 2005, 38,
5359-5362.
(28) Thompson, B. C.; Kim, Y. G.; McCarley, T. D.; Reynolds, J. R. J. Am.
Chem. Soc. 2006, 128, 12714-12725.
(29) Wang, F.; Luo, J.; Yang, K.; Chen, J.; Huang, F.; Cao, Y. Macromolecules
2005, 38, 2253-2260.
(30) Zhang, F.; Mammo, W.; Andersson, L. M.; Admassie, S.; Andersson, M.
R.; Ingana¨s, O. AdV. Mater. 2006, 18, 2169-2173.
(31) Andersson, L. M.; Fengling, Z.; Olle, I. Appl. Phys. Lett. 2007, 91,
071108-3.
(32) Slooff, L. H.; Veenstra, S. C.; Kroon, J. M.; Moet, D. J. D.; Sweelssen, J.;
Koetse, M. M. Appl. Phys. Lett. 2007, 90, 143506-3.
(33) Mu¨hlbacher, D.; Scharber, M.; Morana, M.; Zhu, Z.; Waller, D.; Gaudiana,
R.; Brabec, C. AdV. Mater. 2006, 18, 2884-2889.
(45) de Leeuw, D. M.; Simenon, M. M. J.; Brown, A. R.; Einhard, R. E. F.
Synth. Met. 1997, 87, 53-59.
(46) Choulis, S. A.; Nelson, J.; Kim, Y.; Poplavskyy, D.; Kreouzis, T.; Durrant,
J. R.; Bradley, D. D. C. Appl. Phys. Lett. 2003, 83, 3812-3814.
(47) Mihailetchi, V. D.; Duren, J. K. J. v.; Blom, P. W. M.; Hummelen, J. C.;
Janssen, R. A. J.; Kroon, J. M.; Rispens, M. T.; Verhees, W. J. H.; Wienk,
M. M. AdV. Funct. Mater. 2003, 13, 43-46.
(34) Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.;
Bazan, G. C. Nat. Mater. 2007, 6, 497-500.
(35) Zhang, M.; Tsao, H. N.; Pisula, W.; Yang, C.; Mishra, A. K.; Mullen, K.
J. Am. Chem. Soc. 2007, 129, 3472-3473.
(48) Admassie, S.; Inganas, O.; Mammo, W.; Perzon, E.; Andersson, M. R.
Synth. Met. 2006, 156, 614-623.
(36) Leclerc, M. J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 2867-2873.
(37) Akcelrud, L. Prog. Polym. Sci. 2003, 28, 875-962.
(38) Morin, J.-F.; Leclerc, M.; Ade`s, D.; Siove, A. Macromol. Rapid Commun.
2005, 26, 761-778.
(49) Tretiak, S.; Mukamel, S. Chem. ReV. 2002, 102, 3171-3212.
(50) Belleteˆte, M.; Durocher, G.; Hamel, S.; Coˆte´, M.; Wakim, S.; Leclerc, M.
J. Chem. Phys. 2005, 122, 104303-9.
(39) Grazulevicius, J. V.; Strohriegl, P.; Pielichowski, J.; Pielichowski, K. Prog.
Polym. Sci. 2003, 28, 1297-1353.
(51) Belletete, M.; Blouin, N.; Boudreault, P. L. T.; Leclerc, M.; Durocher, G.
J. Phys. Chem. A 2006, 110, 13696-13704.
(40) Drolet, N.; Morin, J. F.; Leclerc, N.; Wakim, S.; Tao, Y.; Leclerc, M. AdV.
Funct. Mater. 2005, 15, 1671-1682.
(52) Perrier, A.; Maurel, F.; Aubard, J. J. Photochem. Photobiol. A 2007, 189,
167-176.
(41) Li, J.; Dierschke, F.; Wu, J.; Grimsdale, A. C.; Mu¨llen, K. J. Mater. Chem.
2006, 16, 96-100.
(53) Kurashige, Y.; Nakajima, T.; Kurashige, S.; Hirao, K.; Nishikitani, Y. J.
Phys. Chem. A 2007, 111, 5544-5548.
(42) Leclerc, N.; Michaud, A.; Sirois, K.; Morin, J. F.; Leclerc, M. AdV. Funct.
Mater. 2006, 16, 1694-1704.
(54) Osuna, R. M.; Ortiz, R. P.; Okamoto, T.; Suzuki, Y.; Yamaguchi, S.;
Hernandez, V.; Lopez, Navarrete, J. T. J. Phys. Chem. B 2007, 111, 7488-
7496.
(43) Blouin, N.; Michaud, A.; Leclerc, M. AdV. Mater. 2007, 19, 2295-2300.
(44) Koster, L. J. A.; Mihailetchi, V. D.; Blom, P. W. M. Appl. Phys. Lett.
2006, 88, 093511-3.
(55) Liu, T.; Gao, J.-S.; Xia, B.-H.; Zhou, X.; Zhang, H.-X. Polymer 2007, 48,
502-511.
9
J. AM. CHEM. SOC. VOL. 130, NO. 2, 2008 733