4964
X. Yang et al. / Tetrahedron Letters 47 (2006) 4961–4964
be attributed to the p–p interaction between the two
parallel molecules in solution (Fig. 4b). This type of
interaction formation may cause the ECL emission to
be blue-shifted when compared with the photolumines-
Foundation (Grant 20128005), the Ministry of Science
and Technology (MOST) (Grant 2001CCA02500), the
Ministry of Education (MOE) and the Swedish Energy
Agency and the Swedish Research Council.
4
c
cence values previously reported.
The ECL maximum of 2 in CH Cl is close to the photo-
References and notes
2
2
luminescence maximum, and only blue shifted by ca.
2 nm (Fig. 5). The narrow emission band of ECL,
1
1. (a) Kulmala, S.; Suomi, J. Anal. Chim. Acta 2003, 500, 21–
6
(
2
9; (b) Richter, M. M. Chem. Rev. 2004, 104, 3003–3036;
c) F a¨ hnrich, K. A.; Pravda, M.; Guilbault, G. G. Talanta
001, 54, 531–559; (d) Knight, A. W. Trends Anal. Chem.
and the absence of a relatively large shift for the ECL
maximum compared to those of photoluminescence,
excludes the possibility of excimer formation (E-route)
4
b,10
1999, 18, 47–62; (e) White, H. S.; Bard, A. J. J. Am. Chem.
Soc. 1982, 104, 6891–6895; (f) Ege, D.; Becker, W. G.;
Bard, A. J. Anal. Chem. 1984, 56, 2413–2417; (g) Zu, Y.;
Bard, A. J. Anal. Chem. 2000, 72, 3223–3232; (h) Miao,
W.; Bard, A. J. Anal. Chem. 2004, 76, 7109–7113; (i) Yin,
X.-B.; Dong, S.; Wang, E. Trends Anal. Chem. 2004, 23,
432–441; (j) Choi, H. N.; Cho, S.-H.; Lee, W.-Y. Anal.
Chem. 2003, 75, 4250–4256; (k) Honda, K.; Yoshimura,
M.; Rao, T. N.; Fujishima, A. J. Phys. Chem. B 2003, 107,
1653–1663.
during the ion annihilation process.
More impor-
tantly, the ECL intensity is not increased when the
fluorophore concentration is increased. Thus, we can
safely conclude that there is no excimer formation
during the ECL process. By comparison, the fluores-
cence spectrum of 2 was recorded in CH Cl in the same
2
2
ꢀ3
concentration (10 M) as used for the ECL measure-
ments. We found that the photoluminescence maximum
ꢀ5
is invariable as compared to that at 10 M concentra-
tion, although with drastically reduced intensity. There-
fore, it can be considered that the ECL emissive species
is different from that of the photoluminescent species,
and the ECL emission is from an aggregate which is
formed via the p–p interaction of two adjacent parallel
2
3
. (a) Kapturkiewicz, A.; Grabowski, Z. R.; Jasny, J.
J. Electroanal. Chem. 1990, 279, 55–65; (b) Kapturkiewicz,
A.; Herbich, J.; Nowacki, J. Chem. Phys. Lett. 1997, 275,
3
55–362.
. (a) Lai, R. Y.; Fabrizio, E. F.; Lu, L.; Jenekhe, S. A.;
Bard, A. J. J. Am.Chem. Soc. 2001, 123, 9112–9118; (b)
Lai, R. Y.; Kong, X.; Jenekhe, S. A.; Bard, A. J. J. Am.
Chem. Soc. 2003, 125, 12631–12639.
1
1a
molecules.
The ECL emission of compounds 1–5 involve TICT sta-
4. (a) Chen, C.-Y.; Ho, J.-H.; Wang, S.-L.; Ho, T.-I.
Photochem. Photobiol.Sci. 2003, 2, 1232–1236; (b) Wong,
K.-T.; Hung, T.-H.; Chao, T.-C.; Ho, T.-I. Tetrahedron
Lett. 2005, 46, 855–858; (c) Ho, T.-I.; Elangovan, A.; Hsu,
H.-Y.; Yang, S.-W. J. Phys. Chem. B 2005, 109, 8626–
1
1b
tes,
and the blue shift can be explained as above.
Compounds 1 and 5 have simple and similar molecular
structure; however, an ECL emission was observed for 5
but not for 1. In addition to the delocalization of p-elec-
trons mentioned above for compound 5, under electro-
chemistry conditions, the charge separation is more
accessible due to the introduction of thiophene ring.
Here, the positive and negative charges are effectively
separated which allows for a longer life time. Thus,
ECL emission could be easily produced via the annihila-
8
633; (d) Elangovan, A.; Kao, K.-M.; Yang, S.-W.; Chen,
Y.-L.; Ho, T.-I.; Su, Y. O. J. Org. Chem. 2005, 70, 4460–
469.
4
5
. (a) Lobo, B. C.; Abelt, C. J. J. Phys. Chem. A 2003, 107,
10938–10943; (b) Sumalekshmy, S.; Gopidas, K. R.
J. Phys. Chem. B 2004, 108, 3705–3712.
6. (a) Mehlhorn, A.; Schwenzer, B.; Schwetlick, K. Tetra-
hedron 1977, 33, 1489–1491; (b) Yang, J.-S.; Liau, K.-L.;
Wang, C.-M.; Hwang, C.-Y. J. Am. Chem. Soc 2004, 126,
1
2
tion reaction of a radical anion and a radical cation. In
this case, the energy provided by the radical ions is
sufficient enough to populate the singlet excited state.
When the ECL is produced via the S-route, the follow-
1
2325–12335.
7
. Faulkner, L. R.; Tachikawa, H.; Bard, A. J. J. Am. Chem.
Soc. 1972, 94, 691–699.
1
2
ing equation must be satisfied:
8
. Crystal structure data for 2: C H NOS, M = 257.34,
1
4
15
r
o
ann
orthorhombic, space group: P2
1
2
1
2
1
,
a = 6.1356(4),
ꢀ
DH
P Es
ð1Þ
˚
b = 7.6377(5),
c = 28.6163(18) A,
3
a = b = c = 90°,
˚
o
ann
V = 1341.01(15) A , Z = 4, F(000) = 544, D
c
= 1.275 g
where ꢀDH is the annihilation reaction enthalpy and Es
ꢀ3
cm , R = 0.0465, R = 0.1175.CCDC-278807 contains
w
is the energy for the first excited singlet generation state.
the supplementary crystallographic data for this letter.
These data can be obtained free of charge from The
Director, CCDC, 12 Union Road, Cambridge, CB21EZ,
As seen from Table 2, the energy provided by the ion-
annihilation reaction is larger than that required for
the direct production of the singlet state, hence it is en-
ough to produce a singlet state directly. Furthermore, in
these energy sufficient systems, all the stable ECL spec-
tra can be observed via the S-route without the addition
of any co-reactant or a second compound.
9. Coates, G. W.; Dunn, A. R.; Henling, L. M.; Ziller, J. W.;
Lobkovsky, E. B.; Grubbs, R. H. J. Am. Chem. Soc. 1998,
1
20, 3641–3649.
1
1
0. Prieto, I.; Teetsov, J.; Fox, M. A.; Bout, D. A. V.; Bard,
A. J. J. Phys. Chem. A 2001, 105, 520–523.
1. (a) Elangovan, A.; Chiu, H.-H.; Yang, S.-W.; Ho, T.-I.
Org. Biomol. Chem. 2004, 2, 3113–3118; (b) Elangovan,
A.; Yang, S.-W.; Lin, J.-H.; Kao, K.-M.; Ho, T.-I. Org.
Biomol. Chem. 2004, 2, 1597–1602.
Acknowledgements
Financial support of this work from the following sources
is gratefully acknowledged: China Natural Science
12. Fungo, F.; Wong, K.-T.; Ku, S.-Y.; Hung, Y.-Y.; Bard, A.
J. J. Phys. Chem. B 2005, 109, 3984–3989.