10.1002/anie.201900745
Angewandte Chemie International Edition
COMMUNICATION
Retailleau, A. Panossian, F. R. Leroux, G. Masson, J. Org. Chem. 2017,
82, 11877.
5a’h. Pleasingly, naphthalene (1b’ and 1c’) and thiophene (1d’
and 1e’) derivatives produced the desired products in modest to
good yields.
[4]
For ortho C-H functionalization of aryl iodanes,see: a) A. Shafir,
Tetrahedron Lett. 2016, 57, 2673; b) S. Izquierdo, S. Bouvet, Y. Wu, S.
Molina, A. Shafir, Chem. Eur. J. 2018, 24, 15517; c) J. Tian, F. Luo, C.
Zhang, X. Huang, Y. Zhang, L. Zhang, L. Kong, X. Hu, Z.-X. Wang, B.
Peng, Angew. Chem. Int. Ed. 2018, 57, 9078; d) M. Hori, J.-D. Guo, T.
Yanagi, K. Nogi, T. Sasamori, H. Yorimitsu, Angew. Chem. Int. Ed.
2018, 57, 4663; e) Z. Jia, E. Gálvez, R. M. Sebastián, R. Pleixats, Á.
Álvarez-Larena, E. Martin, A. Vallribera, A. Shafir, Angew. Chem. Int.
Ed. 2014, 53, 11298; f) Y. Wu, I. Arenas, L. M. Broomfield, E. Martin, A.
Shafir, Chem. Eur. J. 2015, 21, 18779; g) H. R. Khatri, H. Nguyen, J. K.
Dunaway, J. Zhu, Front. Chem. Sci. Eng. 2015, 9, 359; (h) H. R. Khatri,
J. L. Zhu, Chem. Eur. J. 2012, 18, 12232; i) M. Ochiai, T. Ito, Y.
Takaoka, Y. Masaki, J. Am. Chem. Soc. 1991, 113, 1319; j) M. Ochiai,
T. Ito, J. Org. Chem. 1995, 60, 2274; k) K. Lee, D. Y. Kim, D. Y. Oh,
Tetrahedron Lett. 1988, 29, 667. For para C-H benzylation of aryl
iodanes, see: l) C. Mowdawalla, F. Ahmed, T. Li, K. Pham, L. Dave, G.
Kim, I. F. D. Hyatt, Beilstein J. Org. Chem. 2018, 14, 1039; m) Y. Wu, S.
Bouvet, S. Izquierdo, A. Shafir, Angew. Chem. Int. Ed. 2018, DOI:
10.1002/anie.201809657.
To demonstrate the usefulness of this reaction, we further
elaborated products 4 and 5 as illustrated in Scheme 4. Simple
treatment of 4aa and 4fa with KOt-Bu produced
difluoromethylated phenyl iodides 6a and 6b, respectively, in
good yields.7 The carboxylic group of 5ah was converted to a
new C-F bond giving trifluoromethylated phenyl iodide 7 in 51%
yield.16 The synthetic utility of 7 has been demonstrated by Ritter
and coworkers in the synthesis of an anti-inflammatory drug,
Flunixin.17a Not surprisingly, the iodide group, one of the best
leaving groups, could be readily transformed into other
functionalities including SAr, Ar, Bpin, allyl, vinyl, and alkynyl
groups. Among them, the C-S bond formation of 4da and Suzuki
coupling of 4sa directly delivered the difluoromethylated analogs
of two drugs, Tetrasul17b and Felbinac17c, respectively. Notably,
the successful synthesis of 8 bearing a Bpin moiety ortho to a
difluoromethyl group paves
a
way for coupling the
[5]
a J. ang, M. S nchez- osell , J. L. Ace a, . del ozo, A. .
Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, Chem. Rev. 2014,
114, 2432; b) D. E. Yerien, S. Barata-Vallejo, A. Postigo, Chem. Eur. J.
2017, 23, 14676; c) J. Rong, C. Ni, J. Hu, Asian J. Org. Chem. 2017, 6,
139, and references therein; d) M.-C. Belhomme, T. Besset, T. Poisson,
X. Pannecoucke, Chem. Eur. J. 2015, 21, 12836; e) B. Chen, D. A.
Vicic, Top. Organomet. Chem. 2014, 52, 113.
difluoromethylated arenes with other electrophiles, as
exemplified by the synthesis of an analog of another drug
candidate (LY294002).17d
In summary, we have disclosed an intriguing fluorine effect
which enables a rearrangement which couples aryliodanes with
difluoroenol silyl ether 2a in a redox-neutral manner, leading to
ortho-iodo difluoroalkylated arenes which can serve as
difluorination reagents. Notable features of the reaction include
its remarkably low temperature (-78 °C) and short reaction time
(< 5 min), which allow the process to tolerate a diverse array of
functionalities. The key for the success of the reaction is that the
fluorine effect favors the nucleophilic attack of the O atom of
DFSE 2a on PhI(OTf)2 over C=C attack, thus enabling a
selective assembly of the rearrangement precursor for coupling.
We anticipate that this work will stimulate more interests and
efforts on the development of difluoroalkylation reactions using
the newly discovered fluorine effect.
[6]
[7]
a) U. Farid, T. Wirth, Angew. Chem. Int. Ed. 2012, 51, 3462; b) K. E.
Lutz,R. J. Thomson, Angew. Chem. Int. Ed. 2011, 50, 4437; c) Y. Sun,
X. Huang, X. Li, F. Luo, L. Zhang, M. Chen, S. Zheng, B. Peng, Adv.
Synth. Catal. 2018, 360, 1082; d) N. S. Zefirov, S. O. Safronov, A. A.
Kaznacheev, V. V. Zhdankin, Zh. Org. Khim. 1989, 25, 1807.
a) L. A. Paquette, G. D. Maynard, J. Org. Chem. 1989, 54, 5054; b) S.
Ge, . haładaj, J. F. Hartwig, J. Am. Chem. Soc. 2014, 136, 4149; c)
J. Liang, G. Huang, P. Peng, T. Zhang, J. Wu, F. Wu, Adv. Synth.
Catal. 2018, 360, 2221.
[8]
[9]
X. Huang, M. Patil, C. Farès, W. Thiel, N. Maulide, J. Am. Chem. Soc.
2013, 135, 7312.
a) C. Ni, J. Hu, Chem. Soc. Rev. 2016, 45, 5441; b) J.-S. Yu, Y.-L. Liu,
J. Tang, X. Wang, J. Zhou, Angew. Chem. Int. Ed. 2014, 53, 9512; c)
Y.-L. Liu, J. Zhou, Chem. Commun. 2012, 48, 1919; d) Y. Zhao, B. Gao,
J. Hu, J. Am. Chem. Soc. 2012, 134, 5790; e) C. Ni, L. Zhang, J. Hu, J.
Org. Chem. 2008, 73, 5699; f) Y. Guo, J. M. Shreeve, Chem. Commun.
2007, 3583; g) D. Orr, J. M. Percy, Z. A. Harrison, Chem. Sci. 2016, 7,
6369.
Acknowledgements ((optional))
This work is supported by Zhejiang Normal University and
NSFC-21502171, 21773240. S. E. Denmark (UIUC), A. A.
Thomas (MIT) and J. Hu (SIOC) are thanked for helpful
discussions.
[10]
An acetoxylation product (2-oxo-2-phenylethyl acetate) was obtained
with 76% yield from the reaction of 2b.
[11]
[12]
Y. Zhang, W. Yan, Y. Wang, Z. Weng, Org. Lett. 2017, 19, 5478.
a) C. Han, E. H. Kim, D. A. Colby, J. Am. Chem. Soc. 2011, 133, 5802;
. Jim nez, M. . osch, A. Guerrero, J. Org. Chem. 2005, 70,
10883.
Keywords: fluorine effect• hypervalent iodine •
difluoromethylation • rearrangement reaction
[13]
a) B. Yang, X.-H. Xu, F.-L. Qing, Org. Lett. 2016, 18, 5956; b) X. Li, S.
Li, S. Sun, F. Yang, W. Zhu, Y. Zhu, Y. Wu, Y. Wu, Adv. Synth. Catal.
2016, 358, 1699; c) W. Wan, G. Ma, J. Li, Y. Chen, Q. Hu, M. Li, H.
Jiang, H. Deng, J. Hao, Chem. Commun. 2016, 52, 1598.
[1]
a) T. Wirth, Topics in Current Chemistry: Hypervalent Iodine Chemistry,
Springer International Publishing: Switzerland, 2016; b) A. Yoshimura,
V. V. Zhdankin, Chem. Rev. 2016, 116, 3328; c) V. V. Zhdankin, P. J.
Stang, Chem. Rev. 2008, 108, 5299.
[14] a) E.V. Anslyn, D. A. Dougherty, Modern Physical Organic Chemistry,
University Science Books: Sausalito, 2005, Ch. 8; b) E. M. Simmons, J.
F. Hartwig, Angew. Chem. Int. Ed. 2012, 51, 3066.
[2]
a) A. J. Lauriers, C. Y. Legault, Asian J. Org. Chem. 2016, 5, 1078; b) S.
Arava, J. N. Kumar, S. Maksymenko, M. A. Iron, K. N. Parida, P.
Fristrup, A. M. Szpilman, Angew. Chem. Int. Ed. 2017, 56, 2599; c) P.
Mizar, T. Wirth, Angew. Chem. Int. Ed. 2014, 53, 5993; d) H. Shen, J. Li,
Q. Liu, J. Pan, R. Huang, Y. Xiong, J. Org. Chem. 2015, 80, 7212; e) V.
V. Zhdankin, R. Tykwinski, B. Berglund, M. Mullikin, R. Caple, N. S.
Zefirov, A. S. Koz’min, J. Org. Chem. 1989, 54, 2609; f) R. M. Moriarty,
O. Prakash, M. P. Duncan, Synth. Commun. 1986, 16, 1239.
[15]
k1a/kd-1a = 1/1 could be calculated from equation: k1a/(k1a+kd-1a) × 1 + kd-
1a/(k1a+kd-1a) × 0.62 = 0.81.
[16]
S. Mizuta, I. S. . Stenhagen, M. ’Duill, J. olstenhulme, A. K.
Kirjavainen, S. J. Forsback, M. Tredwell, G. Sandford, P. R. Moore, M.
Huiban, S. K. Luthra, J. Passchier, O. Solin, V. Gouverneur, Org. Lett.
2013, 15, 2648.
[17] a) H. Shi, D. J. Babinski, T. Ritter, J. Am. Chem. Soc. 2015, 137, 3775;
b) H. G. Verschuuren, R. Kroes, G. J. Van Esch, Toxicology 1973, 1,
63; c) C. Kohler, E. Tolman, W. Wooding, L. Ellenbogen, Arzneim.
Forsch. 1980, 30, 702; d T. Tak č, T. echan, . Šamajov , J. Šamaj,
J. Proteome Res. 2013, 12, 4435.
[3]
a) S. Beaulieu, C. Y. Legault, Chem. Eur. J. 2015, 21, 11206; b) E.
Stridfeldt, E. Lindstedt, M. Reitti, J. Blid, P.-O. Norrby, B. Olofsson,
Chem. Eur. J. 2017, 23, 13249; c) G. Levitre, A. Dumoulin, P.
This article is protected by copyright. All rights reserved.