Journal of the American Chemical Society
Page 6 of 7
12.
Morandi,
B.;
6
Carreira,
E.
M.,
Iron-Catalyzed
30.
Keith, J. A.; Carter, E. A., Electrochemical Reactivities of
1
2
3
4
5
6
7
8
Cyclopropanation in
Diazomethane. Science 2012, 335, 1471-1474.
13. Dallinger, D.; Kappe, C. O., Lab-Scale Production of
Anhydrous Diazomethane using Membrane Separation Technology.
Nat. Protoc. 2017, 12, 2138-2147.
M
KOH with in Situ Generation of
Pyridinium in Solution: Consequences For CO2 Reduction
Mechanisms. Chem. Sci. 2013, 4, 1490-1496.
31.
Electrochemistry on Polycrystalline Gold Electrodes and Implications
for CO2 Reduction. J. Phys. Chem. C 2015, 119, 12523-12530.
32.
Surkus, A.; Junge, H.; Gladiali, S.; Lochbrunner, S.; Beller, M., A
Noble‐Metal‐Free System for Photocatalytic Hydrogen Production
from Water. Chem. - Eur. J. 2013, 19, 15972-15978.
Lucio, A. J.; Shaw, S. K., Pyridine and Pyridinium
14.
Nesvadba, P., N-Alkoxyamines: Synthesis, Properties, and
Mejía, E.; Luo, S.; Karnahl, M.; Friedrich, A.; Tschierlei, S.;
Applications in Polymer Chemistry, Organic Synthesis, and Materials
Science. CHIMIA International Journal for Chemistry 2006, 60, 832-
840.
9
15.
Blinco, J. P.; Bottle, S. E.; Fairfull-Smith, K. E.; Simpson, E.;
33.
Pletcher, D.; Green, R. A.; Brown, R. C. D., Flow Electrolysis
Thomas, K., Chapter 3 Synthesis of Nitroxides and Alkoxyamines. In
Nitroxide Mediated Polymerization: From Fundamentals to
Applications in Materials Science, The Royal Society of Chemistry:
2016; pp 114-152.
Cells for the Synthetic Organic Chemistry Laboratory. Chem. Rev.
2018, 118, 4573-4591.
34.
Waldvogel, S. R., Modern Electrochemical Aspects for the Synthesis
of Value-Added Organic Products. Angew. Chem., Int. Ed. 2018, 57,
6018-6041.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Möhle, S.; Zirbes, M.; Rodrigo, E.; Gieshoff, T.; Wiebe, A.;
16.
Zhang, L.; Laborda, E.; Darwish, N.; Noble, B. B.; Tyrell, J. H.;
Pluczyk, S.; Le Brun, A. P.; Wallace, G. G.; Gonzalez, J.; Coote, M. L.;
Ciampi, S., Electrochemical and Electrostatic Cleavage of
Alkoxyamines. J. Am. Chem. Soc. 2018, 140, 766-774.
35.
Rogers, F. J. M.; Coote, M. L., Computational Evaluation of
the Oxidative Cleavage of Triazine Derivatives for Electrosynthesis. J.
Phys. Chem. C 2019, 123, 10306-10310.
36.
of Verdazyl Derivatives for Electrochemical Generation of Carbon-
Centered Radicals. J. Phys. Chem. C 2019 123, 20174-20180.
17.
Zhu, Q.; Gentry, E. C.; Knowles, R. R., Catalytic Carbocation
Generation Enabled by the Mesolytic Cleavage of Alkoxyamine
Radical Cations. Angew. Chem., Int. Ed. 2016, 55, 9969-9973.
18.
R. R., Enantioselective Synthesis of Pyrroloindolines via Noncovalent
Stabilization of Indole Radical Cations and Applications to the
Synthesis of Alkaloid Natural Products. J. Am. Chem. Soc. 2018, 140,
3394-3402.
Rogers, F. J. M.; Coote, M. L., Computational Assessment
Gentry, E. C.; Rono, L. J.; Hale, M. E.; Matsuura, R.; Knowles,
19.
O'Brya, G.; Braslau, R., Terminal Functionalization of
Polymers via Single Electron Oxidation of N-Alkoxyamines.
Macromolecules 2006, 39, 9010-9017.
20.
Wallace, G. G.; Darwish, N.; Coote, L. M.; Ciampi, S., Switchable
Interfaces: Redox Monolayers on Si(100) by Electrochemical Trapping
of Alcohol Nucleophiles. Surfaces 2018, 1, 3-11.
Zhang, L.; Espíndola, B. R.; Noble, B. B.; Gonçales, R. V.;
21.
Marsal, P.; Roche, M.; Tordo, P.; de Sainte Claire, P., Thermal
Stability of O−H and O−Alkyl Bonds in N-Alkoxyamines. A Density
Functional Theory Approach. J. Phys. Chem. A 1999, 103, 2899-2905.
22.
M. L., Effect of Chemical Structure on the Electrochemical Cleavage
of Alkoxyamines. J. Phys. Chem. C 2019, 123, 5273-5281.
Hammill, C. L.; Noble, B. B.; Norcott, P. L.; Ciampi, S.; Coote,
23.
Wang, Y.; Zhang, L.; Yang, Y.; Zhang, P.; Du, Z.; Wang, C.,
Alkene Oxyalkylation Enabled by Merging Rhenium Catalysis with
Hypervalent Iodine(III) Reagents via Decarboxylation. J. Am. Chem.
Soc. 2013, 135, 18048-18051.
24.
Wu, X.; Riedel, J.; Dong, V. M., Transforming Olefins into
γ,δ-Unsaturated Nitriles through Copper Catalysis. Angew. Chem.,
Int. Ed. 2017, 56, 11589-11593.
25.
M., Structural and Reactivity Comparison of Analogous
Organometallic Pd(III) and Pd(IV) Complexes. Dalton Trans. 2012, 41,
14046-14050.
Tang, F.; Qu, F.; Khusnutdinova, J. R.; Rath, N. P.; Mirica, L.
26.
Schultz, J. W.; Fuchigami, K.; Zheng, B.; Rath, N. P.; Mirica,
L. M., Isolated Organometallic Nickel(III) and Nickel(IV) Complexes
Relevant to Carbon–Carbon Bond Formation Reactions. J. Am. Chem.
Soc. 2016, 138, 12928-12934.
27.
Chalmers, B. A.; Morris, J. C.; Fairfull-Smith, K. E.; Grainger,
R. S.; Bottle, S. E., A Novel Protecting Group Methodology for
Syntheses using Nitroxides. Chem. Commun. 2013, 49, 10382-10384.
28.
Behavior of Pyridinium and N-Methyl Pyridinium Cations in Aqueous
Electrolytes for CO2 Reduction. ChemSusChem 2018, 11, 219-228.
29.
M. L., Mechanism of Oxidative Alkoxyamine Cleavage: The Surprising
Role of the Solvent and Supporting Electrolyte. J. Phys. Chem. C
2019, 123, 10300-10305.
Lebègue, E.; Agullo, J.; Bélanger, D., Electrochemical
Noble, B. B.; Norcott, P. L.; Hammill, C. L.; Ciampi, S.; Coote,
6
ACS Paragon Plus Environment