Edge Article
Chemical Science
provide a complimentary tool for the remote C–H functionali-
sation of both 8-aminoquinolinamides and 1-naph-
thylpicolinamides. This new mechanistic understanding
9 (a) S. Vandekerckhove and M. D'Hooghe, Bioorg. Med. Chem.,
2015, 23, 5098–5119; (b) X. Nqoro, N. Tobeka and
B. A. Aderibigbe, Molecules, 2017, 22, 2268.
should now inspire others to develop new synthetic protocols 10 R. Sharma, S. Patil and P. Maurya, SAR QSAR Environ. Res.,
for remote functionalisation using Co-catalysis.
2013, 25, 189–203.
11 A. M. Suess, M. Z. Ertem, C. J. Cramer and S. S. Stahl, J. Am.
Chem. Soc., 2013, 135, 9797–9804.
12 For some innovative examples see: (a) Z. Zhang, K. Tanaka
and J.-Q. Yu, Nature, 2017, 543, 538–542; (b) J. Luo,
S. Preciado and I. Larrosa, J. Am. Chem. Soc., 2014, 136,
4109–4112; (c) O. Saidi, J. Marae, A. E. W. Ledger,
Conflicts of interest
There are no conicts to declare.
Acknowledgements
¨
P. M. Liu, M. F. Mahon, G. Kociok-Kohn, M. K. Whittlesey
A. H., C. J. W. and M. C. would like to thank the Department of
Biosciences and Chemistry/Biomolecular Sciences Research
Centre (BMRC) at Sheffield Hallam University for funding. X. R.
and A. C. thank the Spanish MICINN (CTQ2016-77989-P), and
and C. G. Frost, J. Am. Chem. Soc., 2011, 133, 19298–19301;
(d) N. Hofmann and L. Ackermann, J. Am. Chem. Soc.,
2013, 135, 5877–5884; (e) C. Yuan, L. Zhu, R. Zeng, Y. Lan
and Y. Zhao, Angew. Chem., Int. Ed., 2018, 57, 1277–1281.
the Catalan DIUE of the Generalitat de Catalunya (2017SGR264). 13 For some representative examples see: (a) X.-X. Liu, Z.-Y. Wu,
`
X. R. thanks ICREA for an ICREA Academia award. C. J. W. and
X.-L. Luo, Y.-Q. He, X.-Q. Zhou, Y.-X. Fan and G.-S. Huang,
RSC Adv., 2016, 6, 71485–71488; (b) J. Xu, C. Shen, X. Zhu,
P. Zhang, M. J. Ajitha, K.-W. Huang, Z. An and X. Liu,
Chem.–Asian J., 2016, 11, 882–892; (c) C. Xia, K. Wang,
J. Xu, Z. Wei, C. Shen, G. Duan, Q. Zhu and P. Zhang, RSC
Adv., 2016, 6, 37173–37179; (d) X. Zhu, L. Qiao, P. Ye,
B. Ying, J. Xu, C. Shen and P. Zhang, RSC Adv., 2016, 6,
89979–89983; (e) Y. Dou, Z. Xie, Z. Sun, H. Fang, C. Shen,
P. Zhang and Q. Zhu, ChemCatChem, 2016, 8, 3570–3574;
(f) C. Xia, K. Wang, J. Xu, C. Shen, D. Sun, H. Li, G. Wang
and P. Zhang, Org. Biomol. Chem., 2017, 15, 531–535; (g)
L. Zhu, R. Qiu, X. Cao, S. Xiao, X. Xu, C.-T. Au and
S.-F. Yin, Org. Lett., 2015, 17, 5528–5531; (h) H. Saloo,
A. Mandal, J. Selvakumarm and M. Baidya, Eur. J. Org.
Chem., 2016, 4321–4327; (i) H. Li, H. Chen, C. Bian,
Z. Tang, A. K. Singh, X. Qi, X. Yue, Y. Lan, J.-F. Lee and
A. Lei, Chem. Commun., 2017, 53, 6736–6739; (j) S. Han,
A. Liang, X. Ren, X. Gao, J. Li, D. Zou, Y. Wu and Y. Wu,
Tetrahedron Lett., 2017, 58, 4859–4863.
X. R. also thank COST Action CHAOS (CA15106). O. P. thanks
the Spanish MECD for a pre-doctoral fellowship (FPU13-04099).
We thank IQCC for granting access to their computing cluster.
Notes and references
1 J. J. Li, C–H Bond Activation in Organic Synthesis, CRC Press,
Boca Raton, 1st edn, 2017.
2 For an overview see: (a) D. C. Blakemore, L. Castro,
I. Churcher, D. C. Rees, A. W. Thomas, D. M. Wilson and
A. Wood, Nat. Chem., 2018, 10, 383–394; (b) J. Wencel-
Delord and F. Glorius, Nat. Chem., 2013, 5, 369–375.
3 For an overview of directing groups in metal-catalysed C–H
functionalisations, see: (a) C. Sambiagio, D. Schonbauer,
R. Blieck, T. Dao-Huy, G. Pototschnig, P. Schaaf,
T. Wiesinger, M. F. Zia, J. Wencel-Delord, T. Besset,
¨
¨
B. U. W. Maes and M. Schnurch, Chem. Soc. Rev., 2018, 47,
6603–6743; (b) M. Zhang, Y. Zhang, X. Jie, H. Zhao, G. Li
and W. Su, Org. Chem. Front., 2014, 1, 843–895; (c) 14 For a comprehensive overview of recent advances in metal
M. Corbet and F. De Campo, Angew. Chem., Int. Ed., 2013,
52, 9896–9898.
4 For an overview of mechanisms of C–H bond activation see:
catalysed remote C–H functionalisation's of 8-
aminoquinolinamides see: B. Khan, H. S. Dutta and
D. Koley, Asian J. Org. Chem., 2018, 7, 1270–1297.
A. E. Shilov and G. B. Shul'pin, Chem. Rev., 1997, 98, 2879– 15 C. J. Whiteoak, O. Planas, A. Company and X. Ribas, Adv.
2932.
Synth. Catal., 2016, 358, 1679–1688.
5 H. Yi, G. Zhang, H. Wang, Z. Huang, J. Wang, A. K. Singh and 16 tert-Butyl nitrite has found a variety of uses in organic
A. Lei, Chem. Rev., 2017, 117, 9016–9085.
6 For reviews of Co-catalysed C–H functionalisation protocols
see: (a) G. Pototschnig, N. Maulide and M. Schnurch,
chemistry and has recently been well reviewed: A. Dahiya,
A. K. Sahoo, T. Alam and B. K. Patel, Chem.–Asian J., DOI:
10.1002/asia.201901072.
¨
Chem.–Eur. J., 2017, 23, 9206–9232; (b) W. Liu and 17 (a) K. Wang, G. Wang, G. Duan and C. Xia, RSC Adv., 2017, 7,
L. Ackermann, ACS Catal., 2016, 6, 3743–3752; (c)
P. G. Chirila and C. J. Whiteoak, Dalton Trans., 2017, 46,
9721; (d) T. Yoshino and S. Matsunaga, Adv. Synth. Catal.,
51313–51317; (b) J.-F. Suo, X.-M. Zhao, K.-X. Zhang,
S.-L. Zhou, J.-L. Niu and M.-P. Song, Synthesis, 2017, 49,
3916–3924.
2017, 359, 1245; (e) S. Wang, S.-Y. Chen and X.-Q. Yu, 18 M. Sparta and F. Neese, Review application of closed shell
Chem. Commun., 2017, 53, 3165.
DLPNO-CCSD(T) methods, Chem. Soc. Rev., 2014, 43, 5032–
7 For an overview of some of the many different mechanisms
5041.
reported for Co-catalysed C–H functionalisation protocols 19 (a) C. Riplinger, P. Pinski, U. Becker, E. F. Valeev and
see: O. Planas, P. G. Chirila, C. J. Whiteoak and X. Ribas,
Adv. Organomet. Chem., 2018, 69, 209–282.
8 T. Iwai and M. Sawamura, ACS Catal., 2015, 5, 5031–5040.
F. Neese, J. Chem. Phys., 2016, 144, 024109; (b) M. Saitow,
U. Becker, C. Riplinger, E. F. Valeev and F. Neese, J. Chem.
Phys., 2017, 146, 164105.
This journal is © The Royal Society of Chemistry 2020
Chem. Sci., 2020, 11, 534–542 | 541