132
J.-J. Lv et al. / Phytochemistry 117 (2015) 123–134
data, see Table 1; MS (ESI): m/z 749 [M+Cl]ꢀ; HRMS (ESI): m/z
1077, 1040 cmꢀ1; For 1H NMR (CD3OD, 500 MHz) and 13C NMR
(CD3OD, 125 MHz) spectroscopic data, see Table 3; MS (ESI): m/z
911 [M+Cl]ꢀ; HRMS (ESI): m/z 921.2867 [M+HCOO]ꢀ (calcd for
759.2335 [M+HCOO]ꢀ (calcd for C33H43O20, 759.2353).
4.3.4. Phyllaemblicin H4 (4)
C39H53O25, 921.2881).
White amorphous powder; [
(MeOH) kmax (log ) 200.2 (1.13), 228.4 (1.13), 272.6 (0.18) nm;
a]
25 = +2.4 (c 0.6, CH3OH); UV
D
e
4.3.11. Phyllaemblicin H11 (11)
ECD (in MeOH, kmax [nm], /[mdeg]) 208 (2.2), 226 (ꢀ3.9), 246
White amorphous powder; [
(MeOH) kmax (loge) 201.4 (1.28), 227.2 (1.06), 274.0 (0.49) nm;
a
]
25 = ꢀ7.9 (c 0.3, CH3OH); UV
D
(3.0), 321 (ꢀ4.0); IR (KBr) mmax 3424, 2928, 1719, 1280,
1080 cmꢀ1
;
For 1H NMR (CD3OD, 600 MHz) and 13C NMR
ECD (in MeOH, kmax [nm], /[mdeg]) 207 (1.4), 227 (ꢀ2.6), 247
(2.1), 322 (ꢀ3.2); For 1H NMR (CD3OD, 800 MHz) and 13C NMR
(CD3OD, 150 MHz) spectroscopic data, see Table 3; MS (ESI): m/z
767 [M+Na]+; HRMS (ESI): m/z 743.2384 [MꢀH]ꢀ (calcd for
(CD3OD, 150 MHz) spectroscopic data, see Table 1; MS (ESI): m/z
737 [M+Cl]ꢀ; HRMS (ESI): m/z 759.2346 [M+HCOO]ꢀ (calcd for
C33H43O20, 759.2353).
C
33H43O19, 743.2404).
4.3.5. Phyllaemblicin H5 (5)
White amorphous powder; [
a
]
D
25 = +13.2 (c 0.9, CH3OH); UV
4.3.12. Phyllaemblicin H12 (12)
(MeOH) kmax (log
e) 200.0 (1.05), 228.2 (1.02), 272.4 (0.03) nm;
White amorphous powder; [a]
25 = +7.1 (c 1.6, CH3OH); UV
D
ECD (in MeOH, kmax [nm], /[mdeg]) 202 (5.7), 226 (ꢀ4.4), 245
(MeOH) kmax (loge) 201.8 (1.24), 228.2 (1.12) nm; ECD (in MeOH,
(4.3), 323 (ꢀ4.9); IR (KBr) mmax 3425, 2930, 1719, 1280,
kmax [nm], /[mdeg]) 208 (3.2), 228 (ꢀ2.5), 245 (3.4), 322 (ꢀ3.6);
IR (KBr) mmax 3424, 2928, 1711, 1283, 1078 cmꢀ1; For 1H NMR
(CD3OD, 800 MHz) and 13C NMR (CD3OD, 200 MHz) spectroscopic
data, see Table 4; MS (ESI): m/z 1073 [M+Cl]ꢀ; HRMS (ESI): m/z
1037.3338 [MꢀH]ꢀ (calcd for C44H61O28, 1037.3355).
1076 cmꢀ1
;
For 1H NMR (CD3OD, 800 MHz) and 13C NMR
(CD3OD, 100 MHz) spectroscopic data, see Table 2; MS (ESI): m/z
751 [M+Na]+; HRMS (ESI): m/z 773.2486 [M+HCOO]ꢀ (calcd for
C34H45O20, 773.2510).
4.3.6. Phyllaemblicin H6 (6)
4.3.13. Phyllaemblicin H13 (13)
White amorphous powder; [
a
]
D
25 = +42.3 (c 0.9, CH3OH); UV
White amorphous powder; [
(MeOH) kmax (log
a]
25 = ꢀ31.9 (c 1.1, CH3OH); UV
D
(MeOH) kmax (log
e) 200.4 (1.13), 228.6 (1.15), 272.8 (0.22) nm;
e) 206.0 (1.39), 235.8 (0.96), 306.4 (0.55) nm;
ECD (in MeOH, kmax [nm], /[mdeg]) 204 (5.4), 228 (ꢀ3.4), 244
ECD (in MeOH, kmax [nm], /[mdeg]) 211 (ꢀ3.6), 220 (1.6), 233
(ꢀ1.4), 249 (2.7), 289 (ꢀ1.1), 324 (ꢀ6.5); IR (KBr) mmax 3419,
2927, 1717, 1615, 1081 cmꢀ1; For 1H NMR (CD3OD, 600 MHz)
and 13C NMR (CD3OD, 150 MHz) spectroscopic data, see Table 4;
MS (ESI): m/z 891 [MꢀH]ꢀ; HRMS (ESI): m/z 891.2765 [MꢀH]ꢀ
(calcd for C38H51O24, 891.2776).
(5.0), 321 (ꢀ4.9); IR (KBr) mmax 3429, 2927, 1716, 1280,
;
1114 cmꢀ1 For 1H NMR (CD3OD, 600 MHz) and 13C NMR
(CD3OD, 150 MHz) spectroscopic data, Table 2; MS (ESI): m/z 605
[M+Na]+; HRMS (ESI): m/z 627.1926 [M+HCOO]ꢀ (calcd for
C28H35O16, 627.1931).
4.3.7. Phyllaemblicin H7 (7)
4.3.14. Phyllaemblicin H14 (14)
White amorphous powder; [
a]
25 = +33.5 (c 1.1, CH3OH); UV
White amorphous powder; [
(MeOH) kmax (log
a]
D
25 = ꢀ9.4 (c 1.0, CH3OH); UV
D
(MeOH) kmax (log
e
) 199.8 (1.09), 228.8 (1.11), 271.4 (0.11) nm;
e
) 201.8 (1.24), 257.8 (1.12) nm; ECD (in MeOH,
ECD (in MeOH, kmax [nm], /[mdeg]) 206 (4.4), 227 (ꢀ5.6), 245
kmax [nm], /[mdeg]) 207 (8.1), 235 (ꢀ5.5), 261 (1.4), 310 (ꢀ7.0);
IR (KBr) mmax 3428, 2928, 1708, 1609,1280, 1078 cmꢀ1; For 1H
NMR (CD3OD, 600 MHz) and 13C NMR (CD3OD, 150 MHz) spectro-
scopic data, see Table 4; MS (ESI): m/z 767 [M+Na]+; HRMS (ESI):
m/z 743.2401 [MꢀH]ꢀ (calcd for C33H43O19, 743.2404).
(4.6), 321 (ꢀ5.4); IR (KBr) mmax 3429, 2929, 1718, 1280,
1075 cmꢀ1
;
For 1H NMR (CD3OD, 800 MHz) and 13C NMR
(CD3OD, 100 MHz) spectroscopic data, see Table 2; MS (ESI): m/z
767 [M+Na]+; HRMS (ESI): m/z 789.2440 [M+HCOO]ꢀ (calcd for
C34H45O21, 789.2459).
4.4. Acid hydrolysis of compounds 3–5, 7, and 10
4.3.8. Phyllaemblicin H8 (8)
White amorphous powder; [
a]
25 = +35.0 (c 0.8, CH3OH); UV
Compounds 3–5, 7 and 10 (each 0.5–1.0 mg) were dissolved in
D
(MeOH) kmax (log
e) 200.0 (1.13), 229.0 (1.10), 271.8 (0.05) nm;
2 M HCl (400 lL) in a vial separately. Then, each vial was sealed
ECD (in MeOH, kmax [nm], /[mdeg]) 201 (4.9), 227 (ꢀ4.5), 246
and incubated at 80 °C in a water bath. After 6 h, each solution
was cooled to room temperature, and extracted with CHCl3
(3.9), 322 (ꢀ4.7); IR (KBr) mmax 3430, 2926, 1717, 1281,
1076 cmꢀ1
;
For 1H NMR (CD3OD, 800 MHz) and 13C NMR
(400
l
L ꢁ 2). Each aqueous layer was neutralized by passaging
(CD3OD, 125 MHz) spectroscopic data, see Table 3; MS (ESI): m/z
over a small column with Amberlite IRA-401. TLC was used to
911 [M+Cl]ꢀ; HRMS (ESI): m/z 875.2814 [MꢀH]ꢀ (calcd for
identify the type of monosaccharide by comparing with the
C38H51O23, 875.2827).
authentic
sugars,
with
elution
system
CHCl3:n-
BuOH:MeOH:HAc:H2O (17:10:6:2:3), and the Rfs of standard sug-
ars were 0.40 for arabinose, 0.53 for 6-deoxy b-glucose, 0.46 for
xylose and 0.35 for glucose.
4.3.9. Phyllaemblicin H9 (9)
White amorphous powder; [
(MeOH) kmax (loge) 200.6 (0.93), 228.6 (0.94) nm; ECD (in MeOH,
a
]
D
25 = ꢀ0.6 (c 0.4, CH3OH); UV
kmax [nm], /[mdeg]) 207 (3.7), 226 (ꢀ3.7), 245 (4.3), 322 (ꢀ4.2);
For 1H NMR (CD3OD, 600 MHz) and 13C NMR (CD3OD, 150 MHz)
spectroscopic data, see Table 3; MS (ESI): m/z 751 [M+Na]+;
HRMS (ESI): m/z 743.2391 [MꢀH]ꢀ (calcd for C33H43O19, 743.2404).
4.5. Precolumn derivatization and chiral separation
The mixture of monosaccharides from compounds 3–5, 7 and
10 were added separately into
a
small sample tube.
Derivatization was carried out as reported by Honda et al.
(1989). Briefly, 1-phenyl-3-methyl-5-pyrazolone (PMP) dissolved
in MeOH (0.5 M, 50 lL) and NaOH solution (0.3 M, 50 lL) were
4.3.10. Phyllaemblicin H10 (10)
White amorphous powder; [
(MeOH) kmax (log
a
]
25 = ꢀ7.3 (c 0.6, CH3OH); UV
D
e
) 200.0 (1.01), 228.6 (1.07), 272.2 (0.06) nm;
added in each tube, respectively. The tubes were sealed and incu-
ECD (in MeOH, kmax [nm], /[mdeg]) 203 (5.9), 227 (ꢀ4.1), 246
bated at 70 °C for 30 min. After cooling to room temperature, HCl
solution (0.1 M, 50 lL) was added, and the solution was
(4.7), 322 (ꢀ5.1); IR (KBr) mmax 3424, 2926, 1717, 1605, 1280,