Page 9 of 11
Journal of the American Chemical Society
1
2
3
4
5
6
7
8
9
nescence of Organic Materials. J. Mater. Chem. 2000, 10,
Huang, W. Thermally Activated Delayed Fluorescence Mate-
rials Towards the Breakthrough of Organoelectronics. Adv.
Mater. 2014, 26, 7931–7958. (b) Czerwieniec, R.; Leitl, M. J.;
Homeier, H. H. H.; Yersin, H. Cu(I) Complexes – Thermally
Activated Delayed Fluorescence. Photophysical Approach and
Material Design. Coord. Chem. Rev. 2016, 325, 2–28. (c) Dias,
F. B.; Penfold, T. J.; Monkman, A. P. Photophysics of Ther-
mally Activated Delayed Fluorescence Molecule. Methods
Appl. Fluoresc. 2017, 5, 012001. (d) Yang, Z.; Mao, Z.; Xie,
Z.; Zhang, Y.; Liu, S.; Zhao, J.; Xu, J.; Chi, Z.; Aldred, M. P.
Recent Advances in Organic Thermally Activated Delayed
Fluorescence Materials. Chem. Soc. Rev. 2017, 46, 915–1016.
(e) Wong, M. Y.; Zysman-Colman, E. Purely Organic Ther-
mally Activated Delayed Fluorescence Materials for Organic
Light-Emitting Diodes Adv. Mater. 2017, 29, 1605444. (f)
Sarma, M.; Wong, K.-T. Exciplex: An Intermolecular Charge-
Transfer Approach for TADF. ACS Appl. Mater. Interfaces
2018, 10, 19279–19304. (g) Chen, X.-K.; Kim, D.; Brédas, J.-
L. Thermally Activated Delayed Fluorescence (TADF) Path
toward Efficient Electroluminescence in Purely Organic Ma-
terials: Molecular Level Insight. Acc. Chem. Res. 2018, 51,
2215–2224. (h) Liu, Y.; Li, C.; Ren, Z.; Yan, S.; Bryce, M. R.
All-Organic Thermally Activated Delayed Fluorescence Ma-
terials for Organic Light-Emitting Diodes. Nat. Rev. Mater.
2018, 3, 18020. (i) Data, P.; Takeda, Y. Recent Advancements
in and the Future of Organic Emitters: TADF- and RTP-
Active Multifunctional Organic Materials. Chem. Asian J.
2019, 14, 1613–1636.
1471–1507. (c) Organic Light Emitting Devices: Synthesis,
Properties and Applications; Müllen, K., Scherf, U. Eds.;
Wiley-VCH: Weinheim, 2006.
(6) (a) Kawase, T.; Kurata, H. Ball-, Bowl-, and Belt-Shaped
Conjugated Systems and Their Complexing Abilities:ꢀ Explo-
ration of the Concave−Convex π-π Interaction. Chem. Rev.
2006, 106, 5250−5273. (b) Tahara, K.; Tobe, Y. Molecular
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Loops and Belts. Chem. Rev. 2006, 106, 5274−5290.
(7) (a) Höger, S. J. Highly Efficient Methods for the Preparation
of Shape-Persistent Macrocyclics. J. Polym. Sci., Part A:
Polym. Chem. 1999, 37, 2685−2698. (b) Zhang, W.; Moore J.
S. Shape-Persistent Macrocycles: Structures and Synthetic
Approaches from Arylene and Ethynylene Building Blocks.
Angew. Chem., Int. Ed. 2006, 45, 4416–4439. (c) Diederich,
F.; Kivala, M. All-Carbon Scaffolds by Rational Design. Adv.
Mater. 2010, 22, 803–812. (d) Iyoda, M.; Yamalawa, J.;
Rahman, M. J. Conjugated Macrocycles: Concepts and Appli-
cations. Angew. Chem., Int. Ed. 2011, 50, 10522–10533. (e)
Iyoda, M.; Shimizu, H. Multifunctional p-Expanded Oligothi-
ophene Macrocycles. Chem. Soc. Rev. 2015, 44, 6411–6424.
(f) Smith, M. K.; Miljanić O. Š. Arylene Ethynylene Macro-
cycles: From Molecular Hosts to Components of High-
Performance Supramolecular Architectures. Org. Biomol.
Chem. 2015, 13, 7841–7845. (g) Lewis, S. E. Cyclopara-
phenylenes and Related Nanohoops. Chem. Soc. Rev. 2015, 44,
2221–2304.
(8) (a) Ball, M.; Nuckolls, C. Stepping into the Light: Conjugated
Macrocycles with Donor–Acceptor Motifs. ACS Cent. Sci.
2015, 1, 416–417. (b) Ball, M.; Zhang, B.; Zhong, Y.; Fowler,
B.; Xiao, S.; Ng, F.; Steigerwald, M.; Nuckolls, C. Conjugat-
ed Macrocycles in Organic Electronics. Acc. Chem. Res. 2019,
52, 1068–1078.
(9) (a) Chen, P.; Lalancette, R. A.; Jäkle, F. p-Expanded Bora-
zine: An Ambipolar Conjugated B–p–N Macrocycle. Angew.
Chem., Int. Ed. 2012, 51, 7994–7998. (b) Chen, P.; Yin, X.;
Baser-Kirazli, N.; Jäkle, F. Versatile Design Principles for
Facile Access to Unstrained Conjugated Organoborane Mac-
rocycles. Angew. Chem., Int. Ed. 2015, 54, 10768–10772.
(10) (a) Darzi, E. R.; Hirst, E. S.; Weber, C. D.; Zakharov, L. N.;
Lonergan, M. C.; Jasti, R. Synthesis, Properties, and Design
Principles of Donor-Acceptor Nanohoops. ACS Cent. Sci.
2015, 1, 335–342. (b) Kuwabara, T.; Orii, J.; Segawa, Y.;
Itami, K. Curved Oligophenylenes as Donors in Shape-
Persistent Donor-Acceptor Macrocycles with Solvatofluoro-
chromic Properties. Angew. Chem., Int. Ed. 2015, 54, 9646–
9649.
(11) (a) Ball, M.; Fowler, B.; Li, P.; Joyce, L. A.; Li, F.; Liu, T.;
Paley, D.; Zhong, Y.; Li, H.; Xiao, S.; Ng, F.; Steigerwald, M.
L.; Nuckolls, C. Chiral Conjugated Corrals. J. Am. Chem. Soc.
2015, 35, 9982–9987. (b) Ball, M.; Zhong, Y.; Fowler, B.;
Zhang, B.; Li, P.; Etkin, G.; Paley, D. W.; Decatur, J.;
Dalsania, A. K.; Li, H.; Xiao, S; Ng, F.; Steigerwald, M. L.;
Nuckolls, C. Macrocyclization in the Design of Organic n-
Type Electronic Materials. J. Am. Chem. Soc. 2016, 138,
12861–12867. (c) Zhang, B.; Trinh, M. T.; Fowler, B.; Ball,
M.; Xu, Q.; Ng, F.; Steigerwald, M. L.; Zhu, X.-Y.; Nuckolls,
C.; Zhong, Y. Rigid, Conjugated Macrocycles for High Per-
formance Organic Photodetectors. J. Am. Chem. Soc. 2016,
138, 16426−16431. (d) Zhang, B.; Hernández Sánchez, R.;
Zhong, Y.; Ball, M.; Terban, M. W.; Paley, D.; Billinge, S. J.
L.; Ng, F.; Steigerwald, M. L.; Nuckolls, C. Hollow Organic
Capsules Assemble into Cellular Semiconductors. Nat. Com-
mun. 2018, 9, 1957. (e) Ball, M. L.; Zhang, B.; Xu, Q.; Paley,
D. W.; Ritter, V. C.; Ng, F.; Steigerwald, M. L.; Nuckolls, C.
Influence of Molecular Conformation on Electron Transport
in Giant, Conjugated Macrocycles. J. Am. Chem. Soc. 2018,
140, 10135−10139.
(13) Endo, A.; Ogasawara, M.; Takahashi, A.; Yokoyama, D.;
Kato, Y.; Adachi, C. Thermally Activated Delayed Fluores-
cence from Sn4+-Porphyrin Complexes and Their Application
to Organic Light-Emitting Diodes — A Novel Mechanism for
Electroluminescence. Adv. Mater. 2009, 21, 4802–4806.
(14) Uchida, N.; Sato, T.; Kuwabara, J.; Nishimura, Y.; Kanbara, T.
Delayed Fluorescence Behaviors of Aminopyridine Oligo-
mers: Azacalix[n](2,6)pyridines (n = 3 and 4) and Their Line-
ar Analog. Chem. Lett. 2014, 43, 459–461.
(15) Hu, Y.; Wang, Z.; Jiang, X.; Cai, X.; Su, S. J.; Huang, F.; Cao,
Y. One-Step Synthesis of Cyclic Compounds towards Easy
Room-Temperature Phosphorescence and Deep Blue Ther-
mally Activated Delayed Fluorescence. Chem. Commun. 2018,
54, 7850–7853.
(16) Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R.
Nearly 100% Internal Phosphorescence Efficiency in an Or-
ganic Light Emitting Device. J. Appl. Phys. 2001, 90, 5048–
5051.
(17) Takeda, Y.; Okazaki, M.; Minakata, S. Oxidative Skeletal Re-
arrangement of 1,1’-Binaphthalene-2,2’-diamines (BINAMs)
via C–C Bond Cleavage and Nitrogen Migration: a Versatile
Synthesis of U-Shaped Azaacenes. Chem. Commun. 2014, 50,
10291–10294.
(18) (a) Data, P.; Pander, P.; Okazaki, M.; Takeda, Y.; Minakata,
S.; Monkman, A. P. Dibenzo[a,j]phenazine-Cored Donor-
Acceptor-Donor Compounds as Green-to-Red/NIR Thermally
Activated Delayed Fluorescence Organic Light Emitters. An-
gew. Chem., Int. Ed. 2016, 55, 5739–5744. (b) Okazaki, M.;
Takeda, Y.; Data, P.; Pander, P.; Higginbotham, H.; Monk-
man, A. P.; Minakata, S. Thermally Activated Delayed Fluo-
rescent Phenothiazine-Dibenzo[a,j]phenazine-Phenothiazine
Triads Exhibiting Tricolor-Changing Mechanochromic Lumi-
nescence. Chem. Sci. 2017, 8, 2677–2686. (c) Data, P.; Oka-
zaki, M.; Minakata, S.; Takeda, Y. Thermally Activated De-
layed Fluorescence vs. Room Temperature Phosphorescence
by Conformation Control of Organic Single Molecules. J. Ma-
ter. Chem. C 2019, 7, 6616–6621. (d) Takeda, Y; Kaihara, T.;
Okazaki, M.; Higginbotham, H.; Data, Przemyslaw; Tohnai,
N.; Minakata, S. Conformationally-Flexible and Moderately
Electron-Donating Units-Installed Donor-Acceptor-Donor
Triad Enabling Multicolor-Changing Mechanochromic Lumi-
nescence, Thermally Activated Delayed Fluorescence, and
(12) For selected reviews on TADF, see (a) Tao, Y.; Yuan, K.;
Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.;
ACS Paragon Plus Environment