derived from the chiral pool,7f a chiral auxiliary,7g or a
resolution step.7h
Scheme 1
The key bond disconnections in our retrosynthetic analysis
of dihydrocorynantheol (1) are summarized in Figure 1. We
Figure 1. Dihydrocorynantheol (1): key bond disconnections.
planned to use a Bischler-Napieralski cyclization to form
the tetracyclic skeleton from a suitable ABD precursor. To
complement this classical ABD f ABCD approach, we
envisioned a novel strategy for constructing the functional-
ized piperidine D-ring by a conjugate addition of an
organocuprate to an R,â-unsaturated lactam that would in
turn be prepared by a RCM reaction. The substrate for this
RCM would be assembled via a zirconocene-catalyzed
carbomagnesation of a double bond,8,9 a reaction that has
only once been applied in natural product synthesis,10
although not to the synthesis of an alkaloid. Because this
reaction sets the stereocenter at C(20), use of a chiral catalyst
would enable a facile enantioselective synthesis of 1.11
The synthesis of 1 commenced with an EDCI coupling of
indole-3-acetic acid (2) with diallylamine to give the amide
3 in 88% yield (Scheme 1). Compound 3 was then converted
into the homoallylic amide 6 in a novel one-pot sequence in
which 3 was first cyclized via a RCM reaction employing
Grubbs’ catalyst 4 (0.5 mol %) in THF at room temperature
to provide the amide 5. Zirconocene dichloride (15 mol %)
and EtMgBr (4 equiv) were then simply added to the mixture
to induce the requisite carbomagnesation9 of 5 and a
subsequent elimination to deliver 6 in 71% yield from 3.
Significantly, it was not necessary to protect the indole-NH
during this conversion. It is possible to perform enantio-
selective carbomagnesations of cyclic allyl amides using the
chiral catalyst (EBTHI)Zr-binol,11 so there is an opportunity
to prepare 6 in enantiomerically pure form although we have
not yet examined this possibility. The amide 6 was then
reduced to the amine 7 (LiAlH4, Et2O, rt, 87%), acylation
of which with acryloyl chloride in CH2Cl2 at room temper-
ature gave 8 (73%) to set the stage for the second RCM
reaction. In the event, cyclization of 8 using 5 mol % of 4
delivered lactam 9 in 91% yield.12
(6) (a) Vamvacas, C.; van Philipsborn, W.; Schlittler, E.; Schmid, H.;
Karrer, P. HelV. Chim. Acta 1957, 40, 1793. (b) Dastoor, N. J.; Gorman,
A. A.; Schmid, H. HelV. Chim. Acta 1967, 50, 213. (c) Sawa, Y. K.;
Matsumura, H. Tetrahedron 1969, 25, 5329. (d) van Tamelen, E. E.;
Webber, J.; Schiemenz, G. P.; Barker, W. Bioorg. Chem. 1976, 5, 283; (e)
Le Men, J.; Ze`ches, M.; Sigaut, F. Heterocycles 1982, 19, 1807. (e)
Brillanceau, M. H.; Kan-Fan, C.; Kan, S. K.; Husson, H.-P. Tetrahedron
Lett. 1984, 25, 2767.
(7) Synthesis of rac-1: (a) Ziegler, F. E.; Sweeny, J. G. Tetrahedron
Lett. 1969, 14, 1097. (b) Kametani, T.; Kanaya, N.; Honda, T.; Ihara, M.
Heterocycles 1981, 16, 1937. (c) Ihara, M.; Taniguchi, N.; Fukumoto, K.;
Kametami, T. J. Chem. Soc., Chem. Commun. 1987, 1438. (d) Lounasmaa,
M.; Jokela, R.; Tirkonnen, B.; Miettinen, J.; Halonen, M. Heterocycles 1992,
34, 321. (e) Diez, A.; Villa, C.; Sinibaldi, M.-E.; Troin, Y.; Rubiralta, M.
Tetrahedron Lett. 1993, 34, 733. Synthesis of (-)-1: (f) Suzuki, T.; Sato,
E.; Unno, K.; Kametani, T. Heterocycles 1985, 23, 835. (g) Beard, R. L.;
Meyers, A. I. J. Org. Chem. 1991, 56, 2091. (h) Ohba, M.; Ohashi, T.;
Fuji, T. Heterocycles 1991, 32, 319.
The lactam 9 is potentially a versatile intermediate for the
syntheses of corynantheoid and other indole alkaloids
because the R,â-unsaturated carbonyl moiety should enable
introduction of a variety of substituents onto the D-ring at
C(15) via conjugate addition. However, R,â-unsaturated
(8) (a) Lehmkuhl, H. Bull. Soc. Chim. Fr., Part 2 1981, 87. (b)
Dzhemilev, U. M.; Vostrikova, O. S. J. Organomet. Chem. 1986, 304, 17
and references therein. (c) Yanagisawa, A.; Habaue, S.; Yamamoto, H. J.
Am. Chem. Soc. 1989, 111, 366.
(9) For a review of Zr-catalyzed carbomagnesations, see: Geis, O.;
Schmalz, H.-G. In Organic Synthesis Highlights IV; Schmalz, H.-G., Ed.;
Wiley-VCH: Weinheim, 2000; p 83.
(10) Houri, A. F.; Xu, Z.-M.; Cogan, D. A.; Hoveyda, A. H. J. Am. Chem.
Soc. 1995, 117, 2943.
(11) Visser, M. S.; Heron, N. M.; Didiuk, M. T.; Sagal, J. F.; Hoveyda,
A. H. J. Am. Chem. Soc. 1996, 118, 4291.
(12) For other examples of the synthesis of R,â-unsaturated lactams by
RCM, see: (a) Huwe, C. M.; Kiehl, O. C.; Blechert, S. Synlett 1996, 65.
(b) Rutjes, F. P. J. T.; Schoemaker, H. E. Tetrahedron Lett. 1997, 38, 677.
See also ref 2.
3244
Org. Lett., Vol. 4, No. 19, 2002