Communication
ChemComm
spin density resides at the NO moiety in 4 (Fig. S3, ESI†). This 12 X. Li, D. Lei, M. Y. Chiang and P. P. Gaspar, Phosphorus, Sulfur
Silicon Relat. Elem., 1993, 76, 331–334.
3 A. Doddi, D. Bockfeld, T. Bannenberg, P. G. Jones and M. Tamm,
Angew. Chem., Int. Ed., 2014, 53, 13568–13572.
14 A. Marinetti, F. Mathey, J. Fischer and A. Mitschler, J. Am. Chem.
Soc., 1982, 104, 4484–4485.
5 T. Krachko, M. Bispinghoff, A. M. Tondreau, D. Stein, M. Baker,
A. W. Ehlers, J. C. Slootweg and H. Gruetzmacher, Angew. Chem., Int.
Ed., 2017, 56, 7948–7951.
6 E. P. Wildman, G. Balazs, A. J. Wooles, M. Scheer and S. T. Liddle,
Nat. Commun., 2016, 7, 12884.
7 L. L. Liu, J. Zhou, R. Andrews and D. W. Stephan, J. Am. Chem. Soc.,
2018, 140, 7466–7470.
8 R. Waterman, Chem, 2016, 1, 27–29.
implies that the electron density is mostly localized on the
N and O atoms; this is also apparent from the computed high
dipole moment of 2.77 D for 4.
The combination of matrix IR spectroscopy with quantum
chemical computations at the density functional level of theory
1
1
(M06-2X/6-311++G(2d,2p) + ZPVE and B3LYP/cc-PVTZ + ZPVE)
1
1
allowed the detailed investigation of the photochemical reac-
ꢀ
tions of 2 with CO and NO. We presented the first synthesis
and IR as well as UV/vis spectroscopic characterization of
phenylphosphaketene, 1, the phosphorus analogue of phenyl
isocyanate. Compound 1 is photolabile which led back to 2 and
1
1
9 K. Pal, O. B. Hemming, B. M. Day, T. Pugh, D. J. Evans and
R. A. Layfield, Angew. Chem., Int. Ed., 2016, 55, 1690–1693.
CO upon irradiation with light (l = 254 nm). Analogously, the 20 S. Shah, M. C. Simpson, R. C. Smith and J. D. Protasiewicz, J. Am.
ꢀ
Chem. Soc., 2001, 123, 6925–6926.
1 A. H. Cowley, F. Gabbai, R. Schluter and D. Atwood, J. Am. Chem.
Soc., 1992, 114, 3142–3144.
photochemical reaction (l = 254 nm) of 2 with NO results in the
2
formation of a novel radical species, namely phosphinimine-N-oxyl
radical 4. Spin density analysis revealed high spin densities 22 M. T. Nguyen, A. Van Keer and L. G. Vanquickenborne, J. Org. Chem.,
1
996, 61, 7077–7084.
at nitrogen and oxygen, clearly indicating the spin delocalization
over the NO moiety, consistent with other nitroxide radicals. As
2
3 W. J. Transue, A. Velian, M. Nava, C. Garcia-Iriepa, M. Temprado
and C. C. Cummins, J. Am. Chem. Soc., 2017, 139, 10822–10831.
44
expected, no reaction was observed for 2 with these small mole- 24 M. M. Hansmann, R. Jazzar and G. Bertrand, J. Am. Chem. Soc., 2016,
1
38, 8356–8359.
5 L. Liu, David A. Ruiz, D. Munz and G. Bertrand, Chem, 2016, 1,
47–153.
cules upon annealing the matrices up to 40 K. The facile genera-
tion of 1 and 4 not only opens the door for the studies on their
2
1
chemical structure and bonding but also stimulates new experi- 26 Reactive Intermediate Chemistry, ed. R. A. Moss, M. S. Platz and
M. Jones, Jr., John Wiley & Sons, Inc., 2004.
7 W. H. Lam, P. P. Gaspar, D. A. Hrovat, D. A. Trieber, II, E. R.
Davidson and W. T. Borden, J. Am. Chem. Soc., 2005, 127, 9886–9894.
mental efforts for the investigation of their unexplored chemistry.
A. M. thanks Prof. Dr Peter R. Schreiner for his continuous
and generous support.
2
28 A. Mardyukov, D. Niedek and P. R. Schreiner, Chem. Commun., 2018,
4, 2715–2718.
5
29 A. Mardyukov, F. Keul and P. R. Schreiner, Eur. J. Org. Chem., 2018,
DOI: 10.1002/ejoc.201800639.
Conflicts of interest
3
0 L. L. Liu, J. Zhou, L. L. Cao, R. Andrews, R. L. Falconer, C. A. Russell
and D. W. Stephan, J. Am. Chem. Soc., 2018, 140, 147–150.
1 Z. Mielke and L. Andrews, Chem. Phys. Lett., 1991, 181, 355–360.
2 R. Appel and W. Paulen, Tetrahedron Lett., 1983, 24, 2639–2642.
No competing financial interests have been declared.
3
3
Notes and references
33 R. Appel and W. Paulen, Angew. Chem., 1983, 95, 807–808.
34 A. Hinz, R. Labbow, C. Rennick, A. Schulz and J. M. Goicoechea,
1
2
3
4
B. M. Cossairt, N. A. Piro and C. C. Cummins, Chem. Rev., 2010, 110,
164–4177.
H. Aktas, J. C. Slootweg and K. Lammertsma, Angew. Chem., Int. Ed.,
010, 49, 2102–2113.
S. Kundu, S. Sinhababu, A. V. Luebben, T. Mondal, D. Koley,
B. Dittrich and H. W. Roesky, J. Am. Chem. Soc., 2018, 140, 151–154. 37 D. Martin, C. E. Moore, A. L. Rheingold and G. Bertrand, Angew.
M.-A. Courtemanche, W. J. Transue and C. C. Cummins, J. Am.
Chem. Soc., 2016, 138, 16220–16223.
J. D. Protasiewicz, Eur. J. Inorg. Chem., 2012, 4539–4549.
U. Schmidt, Angew. Chem., 1975, 87, 535–540.
A. V. Akimov, Y. S. Ganushevich, D. V. Korchagin, V. A. Miluykov and
E. Y. Misochko, Angew. Chem., Int. Ed., 2017, 56, 7944–7947.
J. Glatthaar and G. Maier, Angew. Chem., Int. Ed., 2004, 43, 1294–1296.
Angew. Chem., Int. Ed., 2017, 56, 3911–3915.
35 C. Goedecke, M. Leibold, U. Siemeling and G. Frenking, J. Am. Chem.
Soc., 2011, 133, 3557–3569.
36 V. Lavallo, Y. Canac, B. Donnadieu, W. W. Schoeller and G. Bertrand,
Angew. Chem., Int. Ed., 2006, 45, 3488–3491.
4
2
Chem., Int. Ed., 2013, 52, 7014–7017.
38 M. S. Baird, I. R. Dunkin, N. Hacker, M. Poliakoff and J. J. Turner,
J. Am. Chem. Soc., 1981, 103, 5190–5195.
39 I. R. Dunkin and P. C. P. Thomson, J. Chem. Soc., Chem. Commun.,
1982, 1192–1193.
40 H. F. Bettinger and H. Bornemann, J. Am. Chem. Soc., 2006, 128,
11128–11134.
5
6
7
8
9
G. Bucher, M. L. G. Borst, A. W. Ehlers, K. Lammertsma, S. Ceola, 41 K. Edel, M. Krieg, D. Grote and H. F. Bettinger, J. Am. Chem. Soc.,
M. Huber, D. Grote and W. Sander, Angew. Chem., Int. Ed., 2005, 44,
289–3293.
0 A. Mardyukov, D. Niedek and P. R. Schreiner, J. Am. Chem. Soc.,
017, 139, 5019–5022.
2017, 139, 15151–15159.
42 J. M. Galbraith, P. P. Gaspar and W. T. Borden, J. Am. Chem. Soc.,
2002, 124, 11669–11674.
3
1
1
2
43 J. D. Druliner, Macromolecules, 1991, 24, 6079–6082.
1 X. Li, D. Lei, M. Y. Chiang and P. P. Gaspar, J. Am. Chem. Soc., 1992, 44 L. Tebben and A. Studer, Angew. Chem., Int. Ed., 2011, 50,
14, 8526–8531. 5034–5068.
1
This journal is ©The Royal Society of Chemistry 2018
Chem. Commun., 2018, 54, 13694--13697 | 13697