Communication
ChemComm
(0.22 mmol mÀ2) and has disordered alkyl chains, while the
surface coverage of C30 was calculated to be 1.66 mmol mÀ2. On
the other hand, HILIC phases do not usually contain hydrophobic
long alkyl chains,22 while Sil-Amphi6 does contain long alkyl
chain moiety. Therefore, the design of the stationary phase was
important. The introduction of b-Ala residues into two long-chain
alkyl group moieties was very effective for the amphiphile to
make ordered functional groups through H-bonding. As shown
in Fig. 1, Sil-Amphi6 contains balanced hydrophilic and hydro-
phobic moieties, multiple H-bonding sources,26 and multiple
carbonyl-p interaction sources.6 Although the alkyl chains were
disordered, the ordered functional groups facilitated multiple
carbonyl-p interactions with the solutes. Six functional groups
(amide) played a key role in the separation of nonpolar and shape-
constrained isomers in RPLC and polar compounds in HILIC.
Previously developed mixed-mode phases did not show such high
shape selectivity in RPLC due to the lack of multiple interacting
functional groups.13,14 In HILIC, the primary mechanism of
retention is postulated to be partitioning of the analyte into the
water-rich organic layer and the moving organic rich-eluent.22
However, adsorption, ion-exchange, dipole–dipole interaction,
hydrogen bonding,27 p–p, and n–p interactions28 also contribute to
retention on the HILIC stationary phases. In Sil-Amphi6, because the
surface coverage was very low, many aminopropyl functionalities
remained unreacted. Thus, ion-exchange interactions were supposed
to be the major interaction. However, Sil-APS a showed reversed
elution order with the Sil-Amphi6 for the separation of ionic
compounds (Table S7, ESI†). Mixed interactions (adsorption,
dipole–dipole interaction, hydrogen bonding, carbonyl-p and n–p)
contributed on Sil-Amphi6 due to the presence of polar multiple
amide groups in the stationary phase. Interactions from multiple
amide groups as well as aminopropyl functionalities made
the Sil-Amphi6 phase very suitable for mixed-mode liquid
chromatography.
2 J. H. Van Esch and B. L. Feringa, Angew. Chem., Int. Ed., 2000,
39, 2263; T. Shimizu, M. Masuda and H. Minamikawa, Chem. Rev.,
2005, 105, 1401.
3 K. Yamada, H. Ihara, T. Ide, T. Fukumoto and C. Hirayama, Chem.
Lett., 1984, 1713.
4 H. Ihara, M. Takafuji, C. Hirayama and D. F. O’Brien, Langmuir,
1992, 8, 1548.
5 H. Ihara, H. Hachisako, C. Hirayama and K. Yamada, J. Chem. Soc.,
Chem. Commun., 1992, 17, 1244.
6 A. K. Mallik, H. Qiu, T. Sawada, M. Takafuji and H. Ihara, Chem.
Commun., 2011, 47, 10341; A. K. Mallik, H. Qiu, T. Sawada,
M. Takafuji and H. Ihara, Anal. Chem., 2012, 84, 6577.
7 L. C. Sander, M. Pursch and S. A. Wise, Anal. Chem., 1999, 71, 4821;
K. Jinno, T. Nagoshi, N. Tanaka, M. Okamoto, J. C. Fetzer and
W. R. Biggs, J. Chromatogr., 1987, 392, 75.
8 J. G. Dorsey and K. A. Dill, Chem. Rev., 1989, 89, 331; A. K. Mallik,
M. M. Rahman, M. Czaun, M. Takafuji and H. Ihara, J. Chromatogr. A,
2008, 1187, 119; S. A. Wise and W. E. May, Anal. Chem., 1983, 55, 1479.
9 L. C. Sander and S. A. Wise, Anal. Chem., 1987, 59, 2309; L. C. Sander,
K. E. Sharpless, N. E. Craft and S. A. Wise, Anal. Chem., 1994, 66, 1667.
10 A. K. Mallik, H. Qiu, T. Sawada, M. Takafuji and H. Ihara,
J. Chromatogr. A, 2012, 82, 3320; L. C. Sander, K. A. Lippa and
S. A. Wise, Anal. Bioanal. Chem., 2005, 382, 646.
11 D. V. McCalley, J. Chromatogr., 1993, 636, 213; M. Przybyciel and
R. E. Majors, LCGC North Am., 2002, 20, 516; C. Wang, C. Jiang and
D. W. Armstrong, J. Sep. Sci., 2008, 31, 1980.
12 A. A. Kazarian, M. R. Taylor, P. R. Haddad, P. N. Nesterenko and
B. Paull, Anal. Chim. Acta, 2013, 803, 143; Y. Yang and X. Geng,
J. Chromatogr. A, 2011, 1218, 8813.
13 X. D. Liu and C. A. Pohl, J. Sep. Sci., 2010, 33, 779; E. M. Borges,
M. R. Euerby and C. H. Collins, Anal. Bioanal. Chem., 2012, 402, 2043;
X. Lin, Y. Li, D. Xu, C. Yang and Z. Xie, Analyst, 2013, 138, 635.
14 H. Qiu, M. Zhang, T. Gu, M. Takafuji and H. Ihara, Chem. – Eur. J.,
2013, 19, 18004; H. Qiu, A. K. Mallik, T. Sawada, M. Takafuji and
H. Ihara, Chem. Commun., 2012, 48, 1299.
15 K. Kimata, K. Iwaguchi, S. Onishi, K. Jinno, R. Eksteen, K. Hosoya,
M. Arki and N. Tanaka, J. Chromatogr. Sci., 1989, 27, 721; M. R. Euerby
and P. Petersson, J. Chromatogr. A, 2003, 994, 13.
16 Y. Kawachi, T. Ikegami, H. Takubo, Y. Ikegami, M. Miyamoto and
N. Tanaka, J. Chromatogr. A, 2011, 1218, 5903.
17 M. Pursch, S. Strohschein, H. Handel and K. Albert, Anal. Chem.,
1996, 68, 386; M. Pursch, L. C. Sander and K. Albert, Anal. Chem.,
1996, 68, 4107.
18 H. R. Ansarian, M. Derakhshan, M. M. Rahman, T. Sakurai,
M. Takafuji and H. Ihara, Anal. Chim. Acta, 2005, 547, 179.
19 L. C. Sander, S. A. Wise, SRM 869b, Column Selectivity Test Mixture
for Liquid Chromatography (Polycyclic Aromatic Hydrocarbons),
Certificate of Analysis, NIST, Gaithersburg, MD, 2008.
20 M. Pursch, L. C. Sander, H.-J. Egelhaaf, M. Raitza, S. A. Wise,
D. Oelkrug and K. Albert, J. Am. Chem. Soc., 1999, 121, 3201.
21 N. L. T. Padivitage and D. W. Armstrong, J. Sep. Sci., 2011, 34, 1636;
A. Shen, Z. Guo, L. Yu, L. Cao and X. Liang, Chem. Commun., 2011,
47, 4550; A. K. Mallik, W. K. Cheah, K. Shingo, A. Ezaki, M. Takafuji
and H. Ihara, Anal. Bioanal. Chem., 2014, 406, 4585.
In summary, we have demonstrated the synthesis, characteriza-
tion, and applications of an octadecyl-b-alanyl double-alkylated
L-glutamide-derived stationary phase in both RPLC and HILIC
mode (mixed-mode) separation. In RPLC, the new phase showed
very high shape selectivity towards shape-constrained isomers. In
HILIC, it also showed a high separation ability with high efficiency.
This improved performance is based on the presence of highly
hydrophobic moieties and highly hydrophilic moieties (interaction
sites) in the same phase, which is induced by hydrogen bonding
between amide groups. Therefore, the versatile performance of the
new phase leads to a breakthrough in the field of analytical
chemistry and materials science dealing with separation.
22 A. J. Alpert, J. Chromatogr., 1990, 499, 177; P. Hemstrçm, M. Szumski
and K. Irgum, Anal. Chem., 2006, 78, 7098; Z. Guo, A. Lei, Y. Zhang,
Q. Xu, X. Xue, F. Zhang and X. Liang, Chem. Commun., 2007, 2491.
23 M. M. Zheng, M. Y. Zhang, G. Y. Peng and Y. Q. Feng, Anal. Chim.
Acta, 2008, 625, 160; L. Xu, R. Peng, X. Guan, W. Tang, X. Liu and
H. Zhang, Anal. Bioanal. Chem., 2013, 405, 8311.
´
´
´
´
´
´
´
24 P. Kozlık, V. Sımova, K. Kalıkova, Z. Bosakova, D. W. Armstrong and
˘
´
E. Tesarova, J. Chromatogr. A, 2012, 1257, 58.
25 Y. Guo and S. Gaiki, J. Chromatogr. A, 2005, 1074, 71; Y. Guo,
S. Srinivasan and S. Gaiki, Chromatographia, 2007, 66, 223.
26 J. L. Rafferty, J. I. Siepmann and M. R. Schure, Anal. Chem., 2008,
80, 6214; A. Johansson, P. Kollman, S. Rothenberg and J. McKelvey,
J. Am. Chem. Soc., 1974, 96, 3794.
Notes and references
1 H. Jintoku, M. Takafuji, R. Oda and H. Ihara, Chem. Commun., 2012,
48, 4881; H. Jintoku, T. Sagawa, M. Takafuji and H. Ihara,
¨
Chem. – Eur. J., 2011, 17, 11628; T. Hatano, A. Bae, M. Takeuchi, 27 P. Hemstrom and K. Irgum, J. Sep. Sci., 2006, 29, 1784.
N. Fujita, K. Kaneko, H. Ihara, M. Takafuji and S. Shinkai, Angew. 28 H. Qiu, E. Wanigasekara, Y. Zhang, T. Tran and D. W. Armstrong,
Chem., Int. Ed., 2004, 43, 465.
J. Chromatogr. A, 2011, 1218, 8075.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2015