Fatty Acid Hydratase from S. pyogenes
bielski, A. (2001) Mol. Microbiol. 39, 392–406
wild type. However, it seems not to be involved in fatty acid
homeostasis because MICs of cerulenin for wild type and the
7. Bradford, M. M. (1976) Anal. Biochem. 72, 248–254
8. Liavonchanka, A., Rudolph, M. G., Tittmann, K., Hamberg, M., and Feuss-
ner, I. (2009) J. Biol. Chem. 284, 8005–8012
9. Andrews, J. M. (2001) J. Antimicrob. Chemother. 48, 5–16
10. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990)
J. Mol. Biol. 215, 403–410
Unsaturated fatty acids are toxic for many bacteria (41) due
to deteriorating effect on bacterial cellular membrane (42).
They also inhibit enoyl-ACP reductase (FabI) and thus disrupt
bacterial fatty acid synthesis (43). We hypothesize that hydra-
tion of unsaturated fatty acids may represent an additional
detoxification mechanism in bacteria harboring MCRA en-
zymes. Such detoxification could be essential for bacterial col-
onization and survival in fatty acid-rich environments (e.g. skin
and inflamed tissues). In fact, the mutant appeared to be 2-fold
more sensitive to oleic acid than wild type, whereas no changes
in sensitivity to linoleic acid was observed (Fig. 4). The later may
be explained by the fact that linoleic acid is 10 times more toxic
for S. pyogenes M49.
11. Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., and Sayers,
E. W. (2009) Nucleic Acids Res. 37, D26-D31
12. Edgar, R. C. (2004) Nucleic Acids Res. 32, 1792–1797
13. Saitou, N., and Nei, M. (1987) Mol. Biol. Evol. 4, 406–425
14. Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007) Mol. Biol. Evol. 24,
1596–1599
15. Jones, D. T., Taylor, W. R., and Thornton, J. M. (1992) Comput. Appl.
Biosci. 8, 275–282
16. Yang, Z. H. (1993) Mol. Biol. Evol. 10, 1396–1401
17. Sugiura, N. (1978) Commun. Statistics 7a, 13–26
18. Abascal, F., Zardoya, R., and Posada, D. (2005) Bioinformatics 21,
2104–2105
19. Suyama, M., Torrents, D., and Bork, P. (2006) Nucleic Acids Res. 34,
W609–W612
No growth inhibition was observed for the mutant in human
serum, which can be explained by a much lower concentration
(up to 5 orders of magnitude, 7.5 nM) of free oleic and linoleic
acid in the serum (44, 45) than the measured MIC (58 M for
linoleic acid, 458 M for oleic acid). This may explain as well
why the virulence properties are independent of the fatty acid
concentrations in the serum. Here, the mutant showed
increased survival in blood with reduced adherence and inter-
nalization properties to HaCaT cells (Fig. 5, A–C). Therefore,
the deletion of MCRA protein may lead to reduced opsoniza-
tion of the bacterial cell surface, resulting in lower efficiency
20. Posada, D., and Crandall, K. A. (1998) Bioinformatics 14, 817–818
21. Stamatakis, A. (2006) Bioinformatics 22, 2688–2690
22. Yang, Z. H. (2007) Mol. Biol. Evol. 24, 1586–1591
23. Dym, O., and Eisenberg, D. (2001) Protein Sci. 10, 1712–1728
24. Kepler, C. R., and Tove, S. B. (1967) J. Biol. Chem. 242, 5686–5692
25. Maia, M. R., Chaudhary, L. C., Figueres, L., and Wallace, R. J. (2007) An-
tonie Van Leeuwenhoek 91, 303–314
26. Stenz, L., Franc¸ois, P., Fischer, A., Huyghe, A., Tangomo, M., Hernandez,
D., Cassat, J., Linder, P., and Schrenzel, J. (2008) FEMS Microbiol. Lett.
287, 149–155
27. Kepler, C. R., Hirons, K. P., McNeill, J. J., and Tove, S. B. (1966) J. Biol.
Chem. 241, 1350–1354
of antibody-dependent phagocytosis (46, 47). Whether the 28. Kauppinen, S., Siggaard-Andersen, M., and von Wettstein-Knowles, P.
(1988) Carlsberg Res. Commun. 53, 357–370
involvement of MCRA in pathogenicity, however, is connected
to its enzymatic activity remains an open question at this stage.
In summary, our study shows for the first time a detailed
characterization of biochemical and physiological properties
for a member of the MCRA protein family. The SPH protein of
S. pyogenes M49 was identified as fatty acid hydratase that har-
bors FAD as a cofactor that stabilizes its active conformation. It
forms 10-hydroxy and 10,13-dihydroxy derivatives from C-16
and C-18 non-esterified fatty acids. Moreover, the deletion of
SPH led to a 2-fold decrease in resistance to oleic acid,
increased survival of the mutant strain in the whole blood, and
reduced adhesion and internalization to human keratinocytes
in comparison with the wild type.
29. Price, A. C., Choi, K. H., Heath, R. J., Li, Z., White, S. W., and Rock, C. O.
(2001) J. Biol. Chem. 276, 6551–6559
30. Wierenga, R. K., Terpstra, P., and Hol, W. G. (1986) J. Mol. Biol. 187,
101–107
31. Kleiger, G., and Eisenberg, D. (2002) J. Mol. Biol. 323, 69–76
32. Feussner, I., Hornung, E., and Liavonchanka, A. (September 10, 2008)
International Patent WO2008 119735
33. Engel, C. K., Kiema, T. R., Hiltunen, J. K., and Wierenga, R. K. (1998) J. Mol.
Biol. 275, 847–859
34. Bahnson, B. J., Anderson, V. E., and Petsko, G. A. (2002) Biochemistry 41,
2621–2629
35. Cromartie, T. H., and Walsh, C. T. (1976) J. Biol. Chem. 251, 329–333
36. Vargo, D., Pokora, A., Wang, S. W., and Jorns, M. S. (1981) J. Biol. Chem.
256, 6027–6033
37. Duggleby, R. G., and Pang, S. S. (2000) J. Biochem. Mol. Biol. 33, 1–36
38. Liavonchanka, A., Hornung, E., Feussner, I., and Rudolph, M. G. (2006)
Proc. Natl. Acad. Sci. U.S.A. 103, 2576–2581
Acknowledgments—We thank Prof. Kai Tittmann and Dr. Danilo
Meyer for support with stopped-flow measurements and for constant
discussions.
39. Liavonchanka, A., and Feussner, I. (2008) ChemBioChem 9, 1867–1872
40. Kepler, C. R., Tucker, W. P., and Tove, S. B. (1970) J. Biol. Chem. 245,
3612–3620
41. Raychowdhury, M. K., Goswami, R., and Chakrabarti, P. (1985) J. Appl.
Bacteriol. 59, 183–188
REFERENCES
1. Kil, K. S., Cunningham, M. W., and Barnett, L. A. (1994) Infect. Immun. 62, 42. Greenway, D. L., and Dyke, K. G. (1979) J. Gen. Microbiol. 115, 233–245
2440–2449
43. Zheng, C. J., Yoo, J. S., Lee, T. G., Cho, H. Y., Kim, Y. H., and Kim, W. G.
(2005) FEBS Lett. 579, 5157–5162
2. Rosson, R. A., Grund, A. D., Deng, M., and Sanchez-Riera, F. (June 1, 2004)
United States Patent US 6,743,609 B1
44. Richieri, G. V., and Kleinfeld, A. M. (1995) J. Lipid Res. 36, 229–240
3. Bevers, L. E., Pinkse, M. W., Verhaert, P. D., and Hagen, W. R. (2009) J. 45. Kleinfeld, A. M., Prothro, D., Brown, D. L., Davis, R. C., Richieri, G. V., and
Bacteriol. 191, 5010–5012
DeMaria, A. (1996) Am. J. Cardiol. 78, 1350–1354
46. Verbrugh, H. A., Lee, D. A., Elliott, G. R., Keane, W. F., Hoidal, J. R., and
Peterson, P. K. (1985) Immunology 54, 643–653
4. Cunningham, M. W. (2000) Clin. Microbiol. Rev. 13, 470–511
5. Podbielski, A., Spellerberg, B., Woischnik, M., Pohl, B., and Lu¨tticken, R.
(1996) Gene 177, 137–147
47. Valenti-Weigand, P., Benkel, P., Rohde, M., and Chhatwal, G. S. (1996)
Infect. Immun. 64, 2467–2473
6. Kreikemeyer, B., Boyle, M. D., Buttaro, B. A., Heinemann, M., and Pod-
APRIL 2, 2010•VOLUME 285•NUMBER 14
JOURNAL OF BIOLOGICAL CHEMISTRY 10361