Cytotoxicity of Phenolics Found in Cigarette Smoke
Chem. Res. Toxicol., Vol. 19, No. 12, 2006 1609
(25) Brunmark, A., and Cadenas, E. (1989) Redox and addition chemistry
of quinoid compounds and its biological implications. Free Radical
Biol. Med. 7, 435-477.
(26) Borenfreund, E., and Puerner, J. A. (1985) Toxicity determined in
vitro by morphological alterations and neutral red absorption. Toxicol.
Lett. 24, 119-124.
(27) Babich, H., and Borenfreund, E. (1992) Cytotoxic and morphological
effects of phenylpropanolamine, caffeine, nicotine, and some of their
metabolites studied in vitro. Toxicol. in Vitro 6, 493-502.
(28) National Institutes of Health (2001) Report of the international
workshop on in vitro methods for assessing acute systemic toxicity,
National Institutes of Health Publication No. 01-4499, National
Toxicology Program (NTP), Research Triangle Park, NC.
(29) Borenfreund, E., Babich, H., and Martin-Alguacil, N. (1988) Com-
parisons of two in vitro cytotoxicity assayssThe neutral red (NR)
and tetrazolium MTT tests. Toxicol. in Vitro 2, 1-6.
(30) Tewes, F. J., Meisgen, T. J., Veltel, D. J., Roemer, E., and Patskan,
G. (2003) Toxicological evaluation of an electrically heated cigarette.
Part 3: Genotoxicity and cytotoxicity of mainstream smoke. J. Appl.
Toxicol 23, 341-348.
(31) Bombick, D. W., Putnam, K., and Doolittle, D. J. (1998) Comparative
cytotoxicity studies of smoke condensates from different types of
cigarettes and tobaccos. Toxicol. in Vitro 12, 241-249.
(32) Health Canada (2004) Neutral Red Uptake Assay for Mainstream
tion/reg/indust/propose/tox_e.html), Official Method T-502, version
1.1.
(33) National Institutes of Health (2001) Standard Operating Procedure
(SOP) for the BALB/c 3T3 Neutral Red Uptake Cytotoxicity Test (A
Test for basal Cytotoxicity). In Guidance Document on Using In Vitro
Data to Estimate In ViVo Starting Doses for Acute Toxicity, National
Institutes of Health Publication No. 01-4500, Appendix C, National
Toxicology Program (NTP), Research Triangle Park, NC.
(34) INVITTOX (1990) The FRAME Modified Neutral Red Uptake
Cytotoxicity Test, INVITTOX Protocol No. 3a, INVITTOX, Notting-
ham, U.K.
(35) Michaud, J. P., Gandolfi, A. J., and Brendel, K. (1995) Methods of
assessing toxic interactions in vitro: Experimental design and data
analysis. Toxicol. Methods 5, 21-40.
(36) Pedersen, J. A. (2002) On the application of electron paramagnetic
resonance in the study of naturally occuring quinones and quinols.
Spectrochim. Acta A 58, 1257-1270.
(37) Pedersen, J. A. (1985) Handbook of EPR Spectra from Quinones and
Quinols, CRC Press, Boca Raton, FL.
(38) Wardman, P. (1989) Reduction potentials of one-elecron couples
involving free radicals in aqueous solution. J. Phys. Chem. Ref. Data
18, 1637-1755.
(39) Steenken, S., and Neta, P. (1979) Electron transfer rates and
equilibriums between substituted phenoxide ions and phenoxyl radicals.
J. Phys. Chem. 83, 1134-1137.
(40) Snyder, R., and Hedli, C. C. (1996) An overview of benzene
metabolism. EnViron. Health Perspect. 104, 1165-1171.
(41) Bolton, J. L., Trush, M. A., Penning, R. M., Dryhurst, L., and Monks,
T. J. (2000) Role of quinones in toxicology. Chem. Res. Toxicol. 13,
135-160.
(42) Rao, N. R., and Snyder, R. (1999) Oxidative modifications produced
in HL-60 cells on exposure to benzene metabolites. J. Appl. Toxicol.
15, 403-409.
References
(1) Peto, R., Boreham, J., Lopez, A. D., Thun, M., and Heath, C. (1992)
Mortality from tobacco in developed countries: Indirect estimation
from national vital statistics. Lancet 339, 1268-1278.
(2) U.S. Department of Health and Human Services (1998) Reducing the
Health Consequences of Smoking: 25 Years of Progress. A Report of
the Surgeon General, U.S. Department of Health, Center for Disease
Control, Center for Chronic Disease Prevention and Health Promotion,
Office on Smoking and Health, DHHS Publ. No. (CDC) 89-8411.
(3) Pryor, W. A. (1987) The free radical chemistry of cigarette smoke
and the inactivation of alpha-1-proteinase inhibitor. In Pulmonary
Emphysema and Proteolysis (Taylor, J. C., and Mitmtman, C., Eds.)
pp 369-392, Academic Press, New York.
(4) Janoff, A. (1985) Elastases and emphysema. Current assessment of
the protease-antiprotease hypothesis. Am. ReV. Resp. Dis. 132, 417-
433.
(5) Janoff, A., Carp, H., Laurent, P., and Raju, L. (1983) The role of
oxidative processes in emphysema. Am. ReV. Resp. Dis. 127, 31-38.
(6) Hoffmann, D., and Hecht, S. S. (1989) Advances in tobacco carcino-
genesis. In Chemical Carcinogenesis and Mutagenesis (Cooper, C.
S., and Grover, P. L., Eds.) pp 64-102, Springer-Verlag, New York.
(7) Smith, C. J., Perfetti, T. A., Morton, M. J., Rodgman, A., Garg, R.,
Selassie, C. D., and Hansch, C. (2002) The relative toxicity of
substituted phenols reported in cigarette mainstream smoke. Toxicol.
Sci. 69, 265-278.
(8) Pryor, W. A., Hales, B. J., Premovic, P. I., and Church, D. F. (1983)
The radicals in cigarette tar: Their nature and suggested physiological
implications. Science 220, 425-427.
(9) Church, D. F., and Pryor, W. A. (1985) Free-radical chemistry of
cigarette smoke and its toxicological implications. EnViron. Health
Perspect. 64, 111-126.
(10) Baskin, S. I., and Salem, H. (1997) Oxidants, Antioxidants and Free
Radicals, Taylor and Francis, Washington, DC.
(11) Halliwell, B., and Gutteridge, J. M. C. (1999) Free Radicals in Biology
and Medicine, Oxford University Press, New York.
(12) Pryor, W. A., Prier, D. G., and Church, D. F. (1983) Electron-spin
resonance study of mainstream and sidestream cigarette smoke: Nature
of the free radicals in gas-phase smoke and in cigarette tar. EnViron.
Health Perspect. 47, 345-355.
(13) Cosgrove, J. P., Borish, E. T., Church, D. F., and Pryor, W. A. (1985)
The metal-mediated formation of hydroxyl radical by aqueous extracts
of cigarette tar. Biochem. Biophys. Res. Commun. 132, 390-396.
(14) Dube, M. F. R., and Green, C. R. (1982) Methods of collection of
smoke for analytical purposes. Rec. AdV. Tob. Sci. 8, 42-102.
(15) Baker, R. R. (1999) Smoke Chemistry: Tobacco Production, Chemistry
and Technology, Blackwell Science, London.
(16) Pryor, W. A., Terauchi, K., and Davis, W. H., Jr. (1976) Electron
spin resonance (ESR) study of cigarette smoke by use of spin trapping
techniques. EnViron. Health Perspect. 16, 161-176.
(17) Pryor, W. A., Tamura M., Dooley M. M., Premovic P., Hales, B. J.,
and Church, D. F. (1983) Reactive oxy-radicals from cigarette smoke
and their physiological effects. In Oxy Radicals and Their ScaVenger
System. Cellular and Medical Aspects (Greenwald, R., and Cohen,
G., Eds.) pp 185-192, Elsevier Science Publishing, New York.
(18) Zang, L. Y., Stone, K., and Pryor, W. A. (1995) Detection of free
radicals in aqueous extracts of cigarette tar by electron spin resonance.
Free Radical Biol. Med. 19, 161-167.
(19) Butterworth, B. E., Popp, J. A., Conolly, R. B., and Goldsworthy, T.
L. (1992) Chemically induced cell proliferation in carcinogenesis. In
Mechanisms of Carcinogenesis in Risk Identification (Vaino, H.,
Magee, P. N., McGregor, D. B., and McMichael, A. J., Eds.) pp 279-
305, International Agency for Research on Cancer (IRAC), Lyon,
France.
(20) Nanni, E. J., Lovette, M. E., Hicks, R. D., Fowler, K. W., and
Borgerding, M. F. (1990) Separation and quantitation of phenolic
compounds in mainstream cigarette smoke by capillary gas chroma-
tography with mass spectrometry in selected-ion mode. J. Chromatogr.
A 505, 365-374.
(21) Risner, H., and Cash, S. L. (1990) High performance liquid chro-
matographic determination of major phenolics compounds in tobacco
smoke. J. Chromatogr. Sci. 28, 239-244.
(43) Andreoli, C., Rossi, S., Leopardi, P., and Crebelli, R. (1999) DNA
damage by hydroquinone in human white blood cells: Analysis by
alkaline single-cell gel electrophoresis. Mutat. Res. 438, 37-45.
(44) Silva, M. D. C. U., Gaspar, J., Silva, I. D., Leao, D., and Rueff, J.
(2003) Mechanisms of induction of chromosomal aberrations by
hydroquinone in V79 cells. Mutagenesis 18, 491-496.
(45) McCue, J. M., Link, K. L., Eaton, S. S., and Freed, B. M. (2000)
Exposure to cigarette tar inhibits ribonucleotide reductase and blocks
lymphocyte proliferation. J. Immunol. 165, 6771-6775.
(46) McCue, J. M., Lazis, S., Cohen, J. J., Modiano, J. F., and Freed, B.
M. (2003) Hydroquinone and catechol interfere with T cell cycle entry
and progression through the G(1) phase. Mol. Immunol. 39, 995-
1001.
(47) Moridani, M. Y., Siraki, A., and O’Brien, P. J. (2003) Quantitative
structure toxicity relationships for phenols in isolated rat hepatocytes.
Chem.-Biol. Interact. 145, 213-223.
(48) Moridani, M. Y., Siraki, A., Chevaldina, T., Scobie, H., and Brien, P.
J. (2004) Quantitative structure toxicity relationships for catechols in
isolated rat hepatocytes. Chem.-Biol. Interact. 147, 297-307.
(49) Nemeikaite-Ceniene, A., Sergediene, E., Nivinskas, H., and Cenas,
N. (2002) Cytotoxicity of natural hydroxyanthraquinones: Role of
oxidative stress. Z. Naturforsch. C 57, 822-827.
(22) Snook, M., Chortyk, O. T., and Arrendale, R. F. (1985) Isolation and
identification of the phenolic acids of tobacco smoke. Tob. Sci. 26,
25-31.
(23) Pryor, W. A., Stone, K., Zang, L. Y., and Bermudez, E. (1998)
Fractionation of aqueous cigarette tar extracts: Fractions that contain
the tar radical cause DNA damage. Chem. Res. Toxicol. 11, 441-
448.
(24) Blakley, R. L., Henry, D. D., and Smith, C. J. (2001) Lack of
correlation between cigarette mainstream smoke particulate phase
radicals and hydroquinone yield. Food Chem. Toxicol. 39, 401-406.
(50) Li, Y., and Trush, M. A. (1993) DNA damage resulting from the
oxidation of hydroquinone by copper: Role for a Cu(II)/Cu(I) redox
cycle and reactive oxygen generation. Carcinogenesis 14, 1303-1311.