COMMUNICATIONS
imine 3d ;5.00 g, 12.9 mmol) in CH
the catalyst solution at 08C. Stirring the mixture for 10 min gave an orange
solution to which was rapidly added ethyl diazoacetate ;1.484 mL,
2
Cl
2
;10 mL) was added by syringe to
[3] J. C. Antilla, W. D. Wulff, J. Am. Chem. Soc. 1999, 121, 5099.
[4] For other applications of the VAPOL ligand, see a) J. Bao, W. D. Wulff,
A. L. Rheingold, J. Am. Chem. Soc. 1993, 115, 3814ꢁ b) J. Bao, W. D.
Wulff, Tetrahedron Lett. 1995, 36, 3321ꢁ c) J. Bao, W. D. Wulff, J. B.
Dominy, M. J. Fumo, E. B. Grant, A. C. Rob, M. C. Whitcomb, S.-M.
Yeung, R. L. Ostrander, A. L. Rheingold, J. Am. Chem. Soc. 1996, 118,
3392ꢁ d) D. P. Heller, D. R. Goldberg, W. D. Wulff, J. Am. Chem. Soc.
1997, 119, 10551.
1
4.2 mmol) by syringe. Some bubbling was noted after the addition. The
reaction was allowed to proceed for 6 h at 08C and then for 14 h at room
temperature ;228C). The reaction mixture was transferred to a 500-mL
flask, diluted with hexanes ;250 mL), and then the volatiles were removed
under vacuum to give the crude aziridine 3d as an off-white solid. The
1
H NMR spectrum of this material revealed 3d with cis:trans ꢀ 50:1 and
[5] The VANOL ligand was prepared according to the same procedure that
has been reported for the VAPOL ligand.[
4c]
indicated that <1% of 4d and 5d were formed. Purification of 3d by
column chromatography on silica gel with a mixture of ethyl acetate:hex-
anes ;3:7) gave aziridine 3d ;5.20 g, 11 mmol) as a white solid in 85% yield.
The optical purity of this material was determined to be 96% ee by HPLC
[6] A second crop was taken but had only approximately 90% ee.
[7] The optical rotation of an authentic sample of l-DOPAwas found to be
[a]
D
À8.28.
analysis ;OD-H column). Crystallization from hexanes:CH
2 2
Cl ;10:1,
3
00 mL) gave 3d ;4.43 g) with 99% ee. A second crop was taken but
found to be only 90% ee. Spectral data for 3d: m.p. 141 ± 1438C ;hex-
1
anes:CH
;
1
;
2
Cl
2
)ꢁ H NMR ;400 MHz, CDCl
3
): d 0.99 ;t, J 7Hz, 3H), 2.24
s, 3H), 2.25 ;s, 3H), 2.68 ;d, J 7Hz, 1H), 3.18 ;d, J 7Hz, 1H), 3.95 ;s,
H), 3.95 ;m, 2H), 7.07 ;d,J 9 Hz, 1H), 7.19 ;m, 1H), 7.28 ;m, 7 H), 7.45
13
d, J 7Hz, 2H), 7. 81 ;d, J 7Hz, 2H). C NMR ;100.6 MHz, CDCl
3
):
d 13.84, 20.64, 46.57, 47.03, 60.89, 77.49, 122.75, 122.78, 126.05, 127.18,
1
1
1
1
27.30, 127.45, 127.61, 128.55, 128.65, 133.97, 141.35, 141.57, 142.21, 167.45
68.07, 168.24ꢁ IR ;thin film) 3030 ;w), 2980 ;w), 1770 ;s), 1731 ;s),
Stereoselective Synthesis of R - and
P
À1
SP-Dithymidine Phosphorothioates via Chiral
600 cm ;m)ꢁ MS ;EI): m/z ;relative intensity): 474 ;21) [M1], 306 ;12),
6
95 ;10), 167;100)ꢁ m/z calcd for C28H27NO : 474.1903, found 474.1903.
Indolooxazaphosphorine Intermediates
Elemental analysis calcd for C28
H
27NO
6
: C 71.02, H 5.75, N 2.96ꢁ found: C
Cl ) taken on 99% ee
**
Derived from Tryptophan
1.23, H 5.88, N 2.94. [a]2
3
À17.38, ;C 1 from CH
7
D
2
2
material ;HPLC). Further experimental details can be found in the
Supporting Information.
Yixin Lu and George Just*
The use of phosphorothioates as DNA analogues useful in
antisense-based therapy is well established[ and led to the
development of Vitravene as the first antisense drug.[
Several other phosphorothioate oligonucleotides ;PS-Oligos)
are in clinical trials. Although Stec et al. described an elegant
Received: August 9, 2000 [Z15611]
1]
2]
[
1] a) D. Tanner, Angew. Chem. 1994, 106, 625ꢁ Angew. Chem. Int. Ed.
Engl. 1994, 33, 599ꢁ b) W. H. Pearson, B. W. Lian, S. C. Bergmeier in
Comprehensive Heterocyclic Chemistry II, Vol. 1A ;Ed.: A. Padwa),
Pergamon, Oxford, 1996, p. 1ꢁ c) K. M. L. Rai, A. Hassner in Compre-
hensive Heterocyclic Chemistry II, Vol. 1A ;Ed.: A. Padwa), Pergamon,
Oxford, 1996, p. 61ꢁ d) J. Sweeney, H. M. I. Osborn, Tetrahedron:
Asymmetry 1997, 8, 1693ꢁ e) R. S. Atkinson, Tetrahedron 1999, 55, 1519.
2] For previous work on catalytic asymmetric aziridinations, see a) D. A.
Evans, K. A. Woerpel, M. M. Hinman, M. M. Faul, J. Am. Chem. Soc.
[3]
oxathiaphospholane-based approach for preparing diaster-
eomerically pure phosphorothioates, it has not been used for
large-scale production of PS-Oligos, which are still used as a
6
mixture of about 10 diastereomers. The use of cyclic N-
[
acylphosphoramidites as promising monomers for the stereo-
controlled synthesis of phosphorothioates was recently re-
ported by Beaucage et al.[
1
1
1
991, 113, 726ꢁ b) R. E. Lowenthal, S. Masamune, Tetrahedron Lett.
991, 32, 7373ꢁ c) Z. Li, K. R. Conser, E. N. Jacobsen, J. Am. Chem. Soc.
993, 115, 5326ꢁ d) D. A. Evans, M. M. Faul, M. T. Bilodeau, B. A.
Anderson, D. M. Barnes, J. Am. Chem. Soc. 1993, 115, 5328ꢁ e) K.
Noda, N. Hosoya, R. Irie, Y. Ito, T. Katsuki, Synlett 1993, 469ꢁ f) D. A.
Evans, M. M. Faul, M. T. Bilodeau, J. Am. Chem. Soc. 1994, 116, 2742ꢁ
g) D. Tanner, P. G. Andersson, A. Harden, P. Somfai, Tetrahedron Lett.
994, 35, 4631ꢁ h) Z. Li, R. W. Quan, E. N. Jacobsen, J. Am. Chem. Soc.
995, 117, 5889ꢁ i) H. Nishikori, T. Katsuki, Tetrahedron Lett. 1996, 37,
245ꢁ j) A. M. Harm, J. G. Knight, G. Stemp, Synlett 1996, 67 7 ꢁ k) P.
Muller, C. Baud, Y. Jacquier, M. Moran, I. Nageri, J. Phys. Org. Chem.
996, 9, 341ꢁ l) T.-S. Lai, H.-L. Kwong, C.-M. Che, S.-M. Peng, Chem.
Commun. 1997, 2373ꢁ m) M. J. Sodergren, D. A. Alonso, P. G. Ander-
sson, Tetrahedron: Asymmetry 1997, 8, 3563ꢁ n) K. B. Hansen, N. S.
Finney, E. N. Jacobsen, Angew. Chem. 1995, 107, 750ꢁ Angew. Chem.
Int. Ed. Engl. 1995, 34, 676ꢁ o) K. G. Rasmussen, K. A. Jorgensen, J.
Chem. Soc. Chem. Commun. 1995, 1401ꢁ p) V. K. Aggarwal, A.
Thompson, R. V. H. Jones, M. C. H. Standen, J. Org. Chem. 1996, 61,
4]
[5]
Previously, we developed cyclic phosphoramidites such as
sugar-derived oxazaphosphorinanes,[
5b,c]
indolooxazaphos-
phorines ;a),[
5e, f]
and indoleimidazoles for the stereoselec-
[5i]
tive synthesis of PS-Oligos. Here we report on the use of
promising indolooxazaphosphorine precursors derived from
tryptophan which do not require a difficult chromatographic
separation and may form the basis of a practical process.
As demonstrated in the indolooxazaphosphorine ap-
proach,[ chiral auxiliary a led to the stereoselective synthesis
of phosphorothioate in solution. When it was applied to solid-
phase synthesis, a b-elimination caused rearrangement to give
1
1
9
1
5f]
[
*] Prof. Dr. G. Just, Dr. Y. Lu
Department of Chemistry
McGill University
8
368ꢁ q) L. Casarrubios, J. A. Perez, M. Brookhart, J. L. Templeton, J.
Org. Chem. 1996, 61, 8358ꢁ r) H.-J. Ha, K.-H. Kang, J.-M. Suh, Y.-G.
Ahn, Tetrahedron Lett. 1996, 37, 7069ꢁ s) K. G. Rasmussen, K. A.
Jorgensen, J. Chem. Soc. Perkin Trans. 1 1997, 1287ꢁ t) C. Langham, P.
Piaggio, D. Bethell, D. F. Lee, P. McMorn, P. C. Bulman Page, D. J.
Willock, C. Sly, F. E. Hancock, F. King, G. J. Hutchings, J. Chem. Soc.
Chem. Commun. 1998, 1601ꢁ u) S. Minakata, T. Andl, M. Nishimura, I.
Ryu, M. Komatsu, Angew. Chem. 1998, 110, 3596ꢁ Angew. Chem. Int.
Ed. 1998, 37, 3392ꢁ v) P. Müller, C. Baud, Y. Jacquier, Can. J. Chem.
Montreal, PQ, H3A 2K6 ;Canada)
Fax : ;1)514-398-3797
E-mail: just@chemistry.mcgill.ca
[
**] This work was financially supported by Natural Science and Engineer-
ing Research Council of Canada ;NSERC). We thank Nadim Saadeh
and Dr. Orval Mamer, McGill University biomedical mass spectro-
scopy unit, for recording mass spectra.
1
998, 76, 738ꢁ w) S. K. Bertilsson, L. Tedenborg, D. A. Alonso, P. G.
Andersson, Organometallics 1999, 18, 1281ꢁ x) K. Juhl, R. G. Hazell,
K. A. Jorgensen, J. Chem. Soc. Perkin Trans. 1 1999, 2293.
Supporting information for this article is available on the WWW under
http://www.wiley-vch.de/home/angewandte/ or from the author.
Angew. Chem. Int. Ed. 2000, 39, No. 24
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2000
1433-7851/00/3924-4521 $ 17.50+.50/0
4521