Scheme 1. Regioselective Functionalization of Indoles
Figure 1. Bioactive compounds based on 7-substituted indoles.
Our proposal is based on the functionalization of indo-
line derivatives, which are widely available from corre-
sponding indoles by reduction and following protection
(Scheme 1). In the initial study, we first examined the
coupling reaction between N-acetylindoline (1a) and styr-
ene (2a) using [Ru(SbF6)2(p-cymene)]2 as catalyst and
anhydrous Cu(OAc)2 as oxidant in DCE at 120 °C
(Table 1, entry 1). We obtained the desired product 3a in
24% isolated yield. Further screening of solvents with
DMF, t-AmOH, CH3CN, or 1,4-dioxane did not improve
the yield of our desired product (Table 1, entries 2À5).
Several oxidants such as AgOAc or benzoquinone were
As part of our studies on the direct functionalization
of unactivated CÀH bonds,10 we were interested in the
development of a transition-metal-catalyzed regioselective
method for 7-substituted indoles (Scheme 1). Here we
report an one-pot general approach for functionalization
of indole derivatives at the C-7 position.
(5) For Pd-catalyzed indole C-2 alkenylation, see: (a) Garcı
´
ꢀ
a-Rubia,
A.; Arrayas, R. G.; Carretero, J. C. Angew. Chem., Int. Ed. 2009, 48,
ꢀ
6511. (b) Garcıa-Rubia, A.; Arrayas, R. G.; Carretero, J. C. Chem.;
´
Eur. J. 2010, 16, 9676. (c) Maehara, A.; Tsurugi, H.; Satoh, T.; Miura,
M. Org. Lett. 2008, 10, 1159. (d) Kong, A.; Han, X.; Lu, X. Org. Lett.
2006, 8, 1339. (e) Capito, E.; Brown, J. M.; Ricci, A. Chem. Commun.
2005, 1854. (f) Grimster, N. P.; Gauntlett, C.; Godfrey, C. R. A.; Gaunt,
M. J. Angew. Chem., Int. Ed. 2005, 44, 3125. For rhodium(III)-catalyzed
indole C-2 alkenylation, see: (g) Patureau, F. W.; Glorius, F. J. Am.
Chem. Soc. 2010, 132, 9982. (h) Li, B.; Ma, J.; Xie, W.; Song, H.; Xu, S.;
Wang, B. Chem.;Eur. J. 2013, 19, 11863. (i) Ueyama, T.; Mochida, S.;
Fukutani, T.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2011, 13, 706.
For Ru(II)-catalyzed indole C-2 alkenylation, see: (j) Lanke, V.; Prabhu,
K. R. Org. Lett. 2013, 15, 2818.
(6) For C-3 alkenylation, see: (a) Yokoyama, Y.; Matsumoto, T.;
Murakami, Y. J. Org. Chem. 1995, 60, 1486. (b) Itahara, T.; Kawasaki,
K.; Ouseto, F. Synthesis 1984, 236. (c) Chen, W.-L.; Gao, Y.-R.; Mao,
S.; Zhang, Y.-L.; Wang, Y.-F.; Wang, Y.-Q. Org. Lett. 2012, 14, 5920.
(d) Huang, Q.; Song, Q.; Cai, J.; Zhang, X.; Lin, S. Adv. Synth. Catal.
2013, 355, 1512.
Table 1. Optimization of Reaction Conditionsa
entry
PG
Ac (1a)
solvent
oxidant
time (h) yieldc (%)
1
DCE
DMF
Cu(OAc)2
Cu(OAc)2
24
24
24
24
24
24
24
24
24
24
24
36
16
48
36
8
24
20
2
Ac (1a)
Ac (1a)
Ac (1a)
Ac (1a)
Ac (1a)
Ac (1a)
Piv (1b)
3
t-AmOH Cu(OAc)2
CH3CN Cu(OAc)2
dioxane Cu(OAc)2
14
4
<14
<14
trace
trace
n.d.d
n.d.d
53
(7) Liu, Q.; Li, Q.; Ma, Y.; Jia, Y. Org. Lett. 2013, 15, 4528.
5
(8) (a) Monache, F. D.; Dibenedetto, R.; Demoraesesouza, M. A.;
Sandor, P. Gazz. Chim. Ital. 1990, 120, 387. (b) Vougogiannopoulou, K.;
Fokialakis, N.; Aligiannis, N.; Cantrell, C.; Skaltsounis, A. L. Org. Lett.
2010, 12, 1908. (c) Asai, T.; Yamamoto, T.; Oshima, Y. Tetrahedron
Lett. 2011, 52, 7042. (d) Ishikura, M.; Abe, T.; Choshi, T.; Hibino, S.
Nat. Prod. Rep. 2013, 30, 694. (e) Yeung, K. S.; Qiu, Z. L.; Xue, Q. F.;
Fang, H. Q.; Yang, Z.; Zadjura, L.; D’Arienzo, C. J.; Eggers, B. J.;
Riccardi, K.; Shi, P. Y.; Gong, Y. F.; Browning, M. R.; Gao, Q.; Hansel,
S.; Santone, K.; Lin, P. F.; Meanwell, N. A.; Kadow, J. F. Bioorg. Med.
Chem. Lett. 2013, 23, 198. (f) Yeung, K. S.; Qiu, Z. L.; Yin, Z. W.;
Trehan, A.; Fang, H. Q.; Pearce, B.; Yang, Z.; Zadjura, L.; D’Arienzo,
C. J.; Riccardi, K.; Shi, P. Y.; Spicer, T. P.; Gong, Y. F.; Browning,
M. R.; Hansel, S.; Santone, K.; Barker, J.; Coulter, T.; Lin, P. F.;
Meanwell, N. A.; Kadow, J. F. Bioorg. Med. Chem. Lett. 2013, 23, 203.
(9) (a) Hartung, C. G.; Fecher, A.; Chapell, B.; Snieckus, V. Org. Lett.
2003, 5, 1899. (b) Fanton, G.; Coles, N. M.; Cowley, A. R.; Flemming,
6
DCE
DCE
DCE
AgOAc
7
BQ
8
Cu(OAc)2
Cu(OAc)2
Cu(OAc)2
Cu(OAc)2
Cu(OAc)2
9
CO-2Py (1c) DCE
CONEt2 (1d) DCE
SO2-2Py (1e) DCE
10
11
n.d.d
96
12b CONEt2 (1d) DCE
13b CONEt2 (1d) dioxane Cu(OAc)2
51
14b CONEt2 (1d) toluene
15b Ac (1a)
DCE
Cu(OAc)2
31
Cu(OAc)2
99
16b CONEt2 (1d) t-AmOH Cu(OAc)2
17b CONEt2 (1d) t-AmOH Ag2CO3
18b CONEt2 (1d) t-AmOH Ag2O
19b CONEt2 (1d) t-AmOH PhI(OAc)2
20b CONEt2 (1d) t-AmOH NFSI
90
20
36
36
36
45
58
ꢀ
J. P.; Brown, J. M. Heterocycles 2010, 80, 895. (c) Urones, B.; Arrayas,
trace
trace
R. G.;Carretero, J. C. Org. Lett. 2013, 15, 1120. For indolineC-7position
arylations: (d) Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S.
J. Am. Chem. Soc. 2005, 127, 7330. (e) Shi, Z.; Li, B.; Wan, X.; Cheng, J.;
Fang, Z.; Cao, B.; Qin, C.; Wang, Y. Angew. Chem., Int. Ed. 2007, 46,
5554. (f) Nishikata, T.; Abela, A. R.; Huang, S.; Lipshutz, B. H. J. Am.
Chem. Soc. 2010, 132, 4978. (g) Jiao, L.-Y.; Oestreich, M. Chem.;Eur. J.
2013, 19, 10845. (h) Jiao, L.-Y.; Oestreich, M. Org. Lett. 2013, 15, 5374.
(10) (a) Samanta, R.; Antonchick, A. P. Angew. Chem., Int. Ed. 2011,
50, 5217. (b) Samanta, R.; Narayan, R.; Antonchick, A. P. Org. Lett.
2012, 14, 6108.
a Reaction conditions: 1 (0.2 mmol), 2a (1.0 mmol), [RuCl2(p-
cymene)]2 (10 mol %), AgSbF6 (40 mol %), oxidant (2.5 equiv), 0.2 M
at 120 °C (the internal temperature of vial was 105 °C). b Reaction
conditions: 1 (0.1 mmol), 2a (0.5 mmol), [Cp*Rh(III)Cl2]2 (5 mol %),
AgSbF6 (20 mol %), oxidant (2.5 equiv), 0.1 M at 120 °C. c Isolatedyield.
d The formation of product was not detected.
B
Org. Lett., Vol. XX, No. XX, XXXX