A R T I C L E S
Snelders et al.
Figure 6. Examples of triarylphosphine ligands that have shown appreciable activity in Suzuki-Miyaura couplings of aryl chloride substrates.
4
0
40a
Finally, the presence of halide ions in solution can have
profound effects on the structure of several species that are
involved in the catalytic cycle, thereby influencing the observed
ligands such as 5,
bis(3-chlorophenyl)phenylphosphine
4
1
42
(6), and bowl-shaped phosphine ligands such as 7 (Figure
6). For these systems, the activity observed is ascribed to
facilitated dissociation of these ligands from Pd, generating the
coordinatively unsaturated and catalytically active species. In
the case of 6, this effect was tentatively ascribed to the increased
steric bulk and decreased donating ability of the ligand. In the
2
7
catalytic rate. However, as halide ions, originating from the
aryl halide substrate, are naturally released into solution in high
concentration as the reaction progresses, as a consequence of
3
5
the transmetalation step in the Suzuki-Miyaura reaction, it
is unlikely that the low added concentration of bromide ions
originating from ligands 1-3 should have a significant effect.
Indeed, no effect was observed when ammonium bromide salt
(
(
29) Tolman, C. A. Chem. ReV. 1977, 77, 313–348.
30) (a) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 1998, 37, 3387–
3
388. (b) Littke, A. F.; Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2000,
4
was added to a mixture employing PPh
.2. Ligand Structure of Dendriphos in Relation to Activ-
ity in Coupling Reactions of Aryl Chlorides. Conventional
catalysts such as Pd(PPh and Pd(OAc) + 2-4 equiv of PPh
3
as ligand (Figure 3).
122, 4020–4028. (c) Kirchhoff, J. H.; Netherton, M. R.; Hills, I. D.;
Fu, G. C. J. Am. Chem. Soc. 2002, 124, 13662–13663. (d) Kirchhoff,
J. H.; Dai, C.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 1945–
3
1
947. (e) Kudo, N.; Perseghini, M.; Fu, G. C. Angew. Chem., Int. Ed.
)
3 4
2
3
2006, 45, 1282–1284. (f) Fu, G. C. Acc. Chem. Res. 2008, 41, 1555–
1564.
are very effective in the coupling of aryl bromides and iodides,
but their activities in the coupling reaction of aryl chlorides are
low and they require Pd loadings as high as 3-5 mol %, to
(
31) (a) Zapf, A.; Ehrentraut, A.; Beller, M. Angew. Chem., Int. Ed. 2000,
3
9, 4153–4155. (b) Zapf, A.; Jackstell, R.; Rataboul, F.; Riermeier,
T.; Monsees, A.; Fuhrmann, C.; Shaikh, N.; Dingerdissen, U.; Beller,
M. Chem. Commun. 2004, 38–39. (c) Tewari, A.; Hein, M.; Zapf, A.;
Beller, M. Synthesis 2004, 935–941.
2
8
give moderate yields at best. The most efficient ligands for
the Suzuki-Miyaura reaction, in particular for reactions using
1
2
(32) (a) Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1998,
aryl chlorides, are strongly σ-donating phosphines with large
1
20, 9722–9723. (b) Wolfe, J. P.; Singer, R. A.; Yang, B. H.;
2
9
cone angles, such as the trialkylphosphines employed by Fu
Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 9550–9561. (c) Walker,
S. D.; Barder, T. E.; Martinelli, J. R.; Buchwald, S. L. Angew. Chem.,
Int. Ed. 2004, 43, 1871–1876. (d) Barder, T. E.; Walker, S. D.;
Martinelli, J. R.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 4685–
3
0
31
et al. and Beller et al. and the o-(dialkylphosphino)biphenyl-
3
2
based ligands developed by Buchwald et al. A second class
of highly effective ligands are the N-heterocyclic carbenes
developed by Nolan et al. and Organ et al. These systems
can achieve couplings of challenging aryl chlorides using low
Pd loadings at room temperature.
4
696. (e) Billingsley, K. L.; Anderson, K. W.; Buchwald, S. L. Angew.
3
3
34
Chem., Int. Ed. 2006, 45, 3484–3488. (f) Martin, R.; Buchwald, S. L.
Acc. Chem. Res. 2008, 41, 1461–1473.
(
(
33) (a) Grasa, G. A.; Viciu, M. S.; Huang, J.; Zhang, C.; Trudell, M. L.;
Nolan, S. P. Organometallics 2002, 21, 2866–2873. (b) Navarro, O.;
Kelly, R. A., III; Nolan, S. P. J. Am. Chem. Soc. 2003, 125, 16194–
The first step in the catalytic cycle of the Suzuki-Miyaura
reaction is oxidative addition of ArX (X ) I, Br, or Cl) to
1
6195. (c) Marion, N.; Navarro, O.; Mei, L.; Stevens, E. D.; Scott,
N. M.; Nolan, S. P. J. Am. Chem. Soc. 2006, 128, 4101–4111. (d)
Navarro, O.; Marion, N.; Mei, J.; Nolan, S. P. Chem.sEur. J. 2006,
12, 5142–5148. (e) Marion, N.; Nolan, S. P. Acc. Chem. Res. 2008,
41, 1440–1449.
Pd(0)L
ArPd(II)XL
n
(L ) phosphine ligand; n ) 1 or 2), forming
35
n
(Figure 7). Theoretical studies have shown that,
in the case of aryl bromides and aryl chlorides, oxidative
addition to Pd(0)L is the energetically preferred pathway, while
34) (a) Hadei, N.; Kantchev, E. A. B.; O’Brien, C. J.; Organ, M. G. Org.
Lett. 2005, 7, 1991–1994. (b) O’Brien, C. J.; Kantchev, E. A. B.;
Valente, C.; Hadei, N.; Chass, G. A.; Lough, A.; Hopkinson, A. C.;
Organ, M. G. Chem.sEur. J. 2006, 12, 4743–4748. (c) Kantchev,
E. A. B.; O’Brien, C. J.; Organ, M. G. Aldrichimica Acta 2006, 39,
36
2
aryl iodides react with Pd(0)L . This finding is consistent with
3
7
experimental observations. In the case of aryl chlorides, the
oxidative addition can be problematic due to the strength of
the Ar-Cl bond and is considered to be the overall rate-
determining step in the catalytic cycle. The ability of a system
to stabilize Pd(0)L species, which is largely dependent on the
9
7–111. (d) Kantchev, E. A. B.; O’Brien, C. J.; Organ, M. G. Angew.
Chem., Int. Ed. 2007, 46, 2768–2813.
(35) Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95, 2457–2483.
(
36) (a) Goossen, L. J.; Koley, D.; Hermann, H. L.; Thiel, W. Organo-
metallics 2005, 24, 2398–2410. (b) Ahlquist, M.; Norrby, P. O.
Organometallics 2007, 26, 550–553. (c) Lam, K. C.; Marder, T. B.;
Lin, Z. Y. Organometallics 2007, 26, 758–760. (d) Li, Z.; Fu, Y.;
Guo, Q.; Liu, L. Organometallics 2008, 27, 4043–4049.
3
8
steric properties of the ligand, thus plays a great role in
determining its efficiency in the Suzuki-Miyaura reaction,
36d,39
especially with aryl chlorides.
Dendriphos ligands are one
(
37) (a) Amatore, C.; Jutand, A. J. Organomet. Chem. 1999, 576, 254–
of the few examples of triarylphosphines that exhibit consider-
able activity in the coupling of aryl chlorides. Other cases
reported until now include ferrocene-containing triarylphosphine
2
78. (b) Barrios-Landeros, F.; Hartwig, J. F. J. Am. Chem. Soc. 2005,
27, 6944–6945. (c) Barrios-Landeros, F.; Carrow, B. P.; Hartwig,
1
J. F. J. Am. Chem. Soc. 2009, 131, 8141–8154.
1
1414 J. AM. CHEM. SOC. 9 VOL. 131, NO. 32, 2009