PN l ee aw s eJ ꢀ od uo ꢀr nn oa tl ꢀ ao df j Cu sh t eꢀ mm ai sr gt ri ny sꢀ
Page 4 of 5
LETTERꢀ
NJCꢀ
8
995, 143, 407; (b) T. Okuhara, N. Mizu
Catal., 1996, 41, 113; (c) R. Neumann, Prog. Inorg. Chem.,
998, 47, 317; (d) Thematic issue on “Polyoxometalates”, ed.,
C. L. Hill, Chem. Rev., 1998, 98, 1−390; (e) I. V. Kozhevnikov,
Catalysts for Fine Chemical Synthesis, Volume 2, Catalysis by
Polyoxometalates, John Wiley & Sons, Chichester, 2002; (f) C.
L. Hill in Comprehensive Coordination Chemistry II, Vol. 4, eds.,
J. A. McCleverty and T. J. Meyer, Elsevier Pergamon,
Amsterdam, 2004, pp. 679–759; (g) N. Mizuno, K. Kamata, S.
Uchida and K. Yamaguchi in Modern Heterogeneous Oxidation
Catalysis, ed., N. Mizuno, Wiley-VCH, Weinheim, 2009,
pp. 185−216; (h) S. Wang and G. Yang, Chem. Rev., 2015, 115,
corresponding trifluoromethylated products (Fig. 1, entries 3–8). In
the case of 1,4-dichlorobenzene and 1,2-dichlorobenzene, the
reaction proceeded without any dechlorination (Fig. 1, entries 6 and
1
D : 10.1039/C6N 3654F
n oO Ia nd M. Miso nJ 0o , Adv.
1
7). No hydration and hydrolytic decomposition proceeded for
benzonitrile (Fig. 1, entry 8). Heteroarenes, such as pyrazine, 3,5-
dichloropyridine, quinoline, and dibenzothiophene, could be also
converted into the corresponding trifluoromethylated products (Fig.
1, entries 9–12).
In conclusion, we have successfully developed for the first time
the efficient direct C–H trifluoromethylation of (hetero)arenes
catalyzed by vanadium-containing heteropoly acids using NaSO2CF3
as the CF3 source and O2 as the terminal oxidant. The reaction
proceeds via radical pathway. Various kinds of structurally diverse
4893.
9
(a) A. M. Khenkin, G. Leitus and R. Neumann, J. Am. Chem.
Soc., 2010, 132, 11446; (b) K. Yamaguchi, N. Xu, X. Jin, K.
Suzuki and N. Mizuno, Chem. Commun., 2015, 51, 10034; (c)
N. Xu, X. Jin, K. Suzuki, K. Yamaguchi and N. Mizuno, New
J. Chem., 2016, 40, 4865.
(hetero)arenes, such as substituted benzenes, naphthalene, pyrazine,
pyridine, quinoline, and thiophene, could be converted into the
corresponding trifluoromethylated products.
This work was supported in part by JSPS KAKENHI Grant No.
1
1
0 (a) M. Sadakene and E. Steckhan, Chem. Rev., 1998, 98, 219;
(b) I. V. Kozhevnikov, Chem. Rev., 1998, 98, 171.
26708009 and Grant No. 15H05797 in “Precisely Designed
Catalysts with Customized Scaffolding”.
1 (a) J. K. Lee, J. Melsheimer, S. Berndt, G. Mestl, R. Schlögl and
K. Köhler, Appl. Catal., A, 2001, 214, 125; (b) A. Rudnitskaya,
J. A. F. Gamelas, D. V. Evtuguin and A. Legin, New J. Chem.,
2
012, 36, 1036.
12 (a) X. Wu, L. Chu and F. L. Qing, Angew. Chem., Int. Ed., 2013,
2, 2198; (b) F. Yang, P. Klumphu, Y. M. Liang and B. H.
Notes and references
5
1
(a) J. T. Welch, Tetrahedron, 1987, 43, 3123; (b) Thematic issue
on ‘Fluorine in the Life Sciences’, ChemBioChem, 2004, 5, 557;
Lipshutz, Chem. Commun., 2014, 50, 936; (c) Y. Lu, Y. Li, R.
Zhang, K. Jin and C. Duan. J. Fluor. Chem., 2014, 161, 128; (d)
J. Jacquet, S. Blanchard, E. Derat, M. D.-E. Murr and L.
Fensterbank, Chem. Sci., 2016, 7, 2030.
(c) S. Purser, P. R. Moore, S. Swallow and V. Gouverneur, Chem.
Soc. Rev., 2008, 37, 320.
2
(a) T. Furuya, A. S. Kamlet and T. Ritter, Nature, 2011, 473, 470;
(b) O. A. Tomashenko and V. V. Grushin, Chem. Rev., 2011, 111,
1
3 We attempted to detect the adduct of TEMPO–CF by means of
GC, GC-MS, and F NMR analyses. However, the detection
was not successful. In the following reported radical
3
19
4475; (c) E. Merino and C. Nevado, Chem. Soc. Rev., 2014, 43,
6598; (d) C. Alonso, E. M. Marigorta, G. Rubiales and F.
Palacios, Chem. Rev., 2015, 115, 1847.
trifluoromethylation systems, the detection of the TEMPO–CF
3
adduct is also unsuccessful: (a) W. Kong, M. Casimiro, E.
Merino and C. Nevado, J. Am. Chem. Soc., 2013, 135, 14480;
3
4
(a) A. Studer, Angew. Chem., Int. Ed., 2012, 51, 8950; (b) H.
Liu, Z. Gu and X. Jiang, Adv. Synth. Catal., 2013, 355, 617.
(a) T. Kino, Y. Nagase, Y. Ohtsuka, K. Yamamoto, D. Uraguchi,
K. Tokuhisa and T. Yamakawa, J. Fluor. Chem., 2010, 131, 98;
(b) Y. Yang, Y. Liu, Y. Jiang, Y. Zhang and D. A. Vicic, J. Org.
Chem., 2015, 80, 6639; (c) Q. Lefebvre, N. Hoffmann and M.
Rueping, Chem. Commun., 2016, 52, 2493.
(b) R. N. Loy and M. S. Sanford, Org. Lett., 2011, 13, 2548; (c)
D. Nagib and D. MacMillan, Nature, 2011, 480, 224; (d) E.
Mejía and A. Togni, ACS Catal., 2012, 2, 521; (e) S. Seo, J. B.
Taylor and M. F. Greaney, Chem. Commun., 2013, 49, 6385; (f)
A. Sato, J. Han, T. Ono, A. Wzorek, J. L. Aceña and V. A.
Soloshonok, Chem. Commun., 2015, 51, 5967; (g) L. He, K.
Natte, J. Rabeah, C. Taeschler, H. Neumann, A. Brückner and M.
Beller, Angew. Chem., Int. Ed., 2015, 54, 4320; (h) M. Baar and
S. Blechert, Chem. –Eur. J., 2015, 21, 526; (i) F. Sladojevich, E.
McNeill, J. Orgel, S. Zheng and T. Ritter, Angew. Chem., Int.
Ed., 2015, 54, 3712; (j) J. W. Beatty, J. J. Douglas, K. P. Cole
and C. R. J. Stephenson, Nat. Commun., 2015, 6, 7919; (k) K.
Natte, R. V. Jagadeesh, L. He, J. Rabeah, J. Chen, C. Taeschler,
S. Ellinger, F. Zaragoza, H. Neumann, A. Brückner and M.
Beller, Angew. Chem., Int. Ed., 2016, 55, 2782.
5
6
(a) M. Tordeux, B. R. Langlois and C. Wakselman, J. Org.
Chem., 1989, 54, 2452; (b) B. R. Langlois, E. Laurent and N.
Roidot, Tetrahedron Lett., 1991, 32, 7525; (c) C. Zhang, Adv.
Synth. Catal., 2014, 356, 2895.
(a) Y. Ji, T. Brueckl, R. D. Baxter, Y. Fujiwara, I. B. Seiple, S.
Su, D. G. Blackmond and P. S. Baran, Proc. Natl. Acad. Sci.,
2011, 108, 14411; (b) Y. Yang, K. Iwamoto, E. Tokunaga and N.
Shibata, Chem. Commun., 2013, 49, 5510; (c) D. Wang, G.-J.
Deng, S. Chen and H. Gong, Green Chem., 2016, 18, 5967.
(a) L. Li, X. Mu, W. Liu, Y. Wang, Z. Mi and C. Li, J. Am.
Chem. Soc., 2016, 138, 5809; (b) L. Cui, Y. Matusaki, N. Tada,
T. Miura, B. Uno and A. Itoh, Adv. Synth. Catal., 2013, 355,
7
2203.
4
ꢀ|ꢀJ.ꢀName.,ꢀ2012,ꢀ00,ꢀ1-3ꢀ
Thisꢀjournalꢀisꢀ©ꢀTheꢀRoyalꢀSocietyꢀofꢀChemistryꢀ20xxꢀ
Pleaseꢀdoꢀnotꢀadjustꢀmarginsꢀ