4690
B. De Clercq, F. Verpoort / Tetrahedron Letters 43 (2002) 4687–4690
Table 3. Yield (%) for the ATRP of styrene catalysed by
Ia–f and properties of the formed polymers with systems
Ia–f
Monomer=styrene
Ia
Ib
Ic
Id
Ie
If
Yield (%)a
11
–
–
–
–
–
–
–
–
–
71
34
46
1.35
0.87
44
25
38
1.51
0.73
63
31
44
1.42
0.85
36
27
40
1.49
0.56
b
Mn (×103)
b
Mw (×103)
(Mw/Mn)b
fic
a Reaction conditions: [monomer]0: [initiator]0: [Ru]0=800:2:1, initia-
tor: (1-bromoethyl)benzene, temperature: 110°C, reaction time: 17 h.
b Mn, Mw and the PDIs are determined by size-exclusion chromato-
graphy (SEC) with polystyrene calibration.
Figure 4. Time dependence of ln([M0]/[Mt]) for the ATRP of
styrene and using catalytic system Ic. [M0] and [Mt] are the
monomer concentrations at times 0 and t (y=0.074x; r2=
0.9948).
c fi=Initiation
([monomer]0/[initiator]0)×MW(monomer)×conversion.
efficiency=Mn,theor./Mn,exp.
with
Mn,theor.=
Acknowledgements
depicted in Table 3. Again catalyst Ic is the best
performing. Besides a good yield of 71%, the good
initiation efficiency of 0.87 and the polydispersity (Mw/
Mn) of 1.35 indicate that the polymerisation proceeds in
a controlled fashion. For Ic we also followed the
monomer conversion and the number average molecu-
lar weight (Mn) in function of time. The dependence of
molecular weight and polydispersity on monomer con-
version are illustrated in Fig. 3. The linear dependence
observed for Mn is in agreement with a controlled
process with a constant number of growing chains. In
addition, the significant decrease of the polydispersity
with polymerisation time indicates that the radicals are
long-lived. Moreover, also the first order kinetic plot is
linear, so that one can conclude that termination reac-
tions are almost completely excluded (Fig. 4).
B.D.C. is indebted to the IWT (Vlaams instituut voor
de bevordering van het wetenschappelijk-technologisch
onderzoek in de industrie) for a research grant. F.V. is
indebted to the FWO-Flanders (Fonds voor weten-
schappelijk onderzoek-Vlaanderen) for financial sup-
port and to Research funds of Ghent University.
References
1. Kharasch, M. S.; Jensen, E. V.; Urry, W. H. Science
1945, 102, 128.
2. (a) Minisci, F. Acc. Chem. Res. 1975, 8, 165; (b) Iqbal, J.;
Bhatia, B.; Nayyar, N. K. Chem. Rev. 1994, 94, 519; (c)
Gossage, R. A.; Van De Kuil, L. A.; Van Koten, G. Acc.
Chem. Res. 1998, 31, 423.
3. Simal, F. Ph.D. Thesis, University of Lie`ge, 2000.
4. Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura,
T. Macromolecules 1995, 28, 1721.
5. Wang, J.-S.; Matyjaszewski, K. J. Am. Chem. Soc. 1995,
117, 5614.
6. De Clercq, B.; Verpoort, F. Adv. Synth. Catal. 2002,
accepted.
7. Takahashi, H.; Ando, T.; Kamigaito, M.; Sawamoto, M.
Macromolecules 1999, 32, 3820.
In conclusion, the catalytic system Ic is the most active
ruthenium carbene catalyst reported so far for the
ATRA reaction of CCl4 across olefins. Moreover, our
homobimetallic catalytic complex Ic can compete with
2a, which is the highest performing system of all types
of ruthenium catalysts ever published for promoting
ATRA reactions. Furthermore, Ic also exhibits good
activity and control in ATRP reactions with styrene.
8. Simal, F.; Wlodarczac, L.; Demonceau, A.; Noels, A. F.
Eur. J. Org. Chem. 2001, 2689.
9. Simal, F.; Wlodarczac, L.; Demonceau, A.; Noels, A. F.
Tetrahedron Lett. 2000, 41, 6071.
10. Matsumoto, H.; Nakano, T.; Nagai, Y. Tetrahedron Lett.
1973, 14, 5147.
11. Tallarico, J. A.; Malnick, L. M.; Snapper, M. L. J. Org.
Chem. 1999, 64, 344.
12. Simal, F.; Demonceau, A.; Noels, A. F. Tetrahedron Lett.
1999, 40, 5689.
13. Simal, F.; Demonceau, A.; Noels, A. F. Recent Res.
Devel. Organic. Chem. 1999, 3, 455.
14. Simal, F.; Demonceau, A.; Noels, A. F. Angew. Chem.,
Int. Engl. Ed. 1999, 38, 538.
15. (a) Fagan, P. J.; Mahoney, W. S.; Calabrese, J. C.;
Williams, I. D. Organometallics 1990, 9, 1843; (b) Chinn,
M. S.; Heinekey, D. M. J. Am. Chem. Soc. 1990, 112,
5166.
Figure 3. Dependence of the molecular weight Mn and Mw/
Mn on monomer conversion for styrene and using catalytic
system Ic.