Chemistry & Biology
Trans-AT PKS Proofreading
Floss, H.G., and Yu, T.W. (1999). Lessons from the rifamycin biosynthetic gene
Musiol, E.M., Ha¨ rtner, T., Kulik, A., Moldenhauer, J., Piel, J., Wohlleben, W.,
and Weber, T. (2011). Supramolecular templating in kirromycin biosynthesis:
the acyltransferase KirCII loads ethylmalonyl-CoA extender onto a specific
ACP of the trans-AT PKS. Chem. Biol. 18, 438–444.
cluster. Curr. Opin. Chem. Biol. 3, 592–597.
¨
Frank, B., Knauber, J., Steinmetz, H., Scharfe, M., Blocker, H., Beyer, S., and
Mu¨ ller, R. (2007). Spiroketal polyketide formation in Sorangium: identification
and analysis of the biosynthetic gene cluster for the highly cytotoxic spiran-
gienes. Chem. Biol. 14, 221–233.
Nguyen, T., Ishida, K., Jenke-Kodama, H., Dittmann, E., Gurgui, C., Hochmuth,
T., Taudien, S., Platzer, M., Hertweck, C., and Piel, J. (2008). Exploiting
the mosaic structure of trans-acyltransferase polyketide synthases for
natural product discovery and pathway dissection. Nat. Biotechnol. 26,
225–233.
Gru¨ schow, S., Buchholz, T.J., Seufert, W., Dordick, J.S., and Sherman, D.H.
(2007). Substrate profile analysis and ACP-mediated acyl transfer in
Streptomyces coelicolor Type III polyketide synthases. ChemBioChem 8,
863–868.
Partida-Martinez, L.P., and Hertweck, C. (2005). Pathogenic fungus harbours
endosymbiotic bacteria for toxin production. Nature 437, 884–888.
Heathcote, M.L., Staunton, J., and Leadlay, P.F. (2001). Role of type II thioes-
terases: evidence for removal of short acyl chains produced by aberrant
decarboxylation of chain extender units. Chem. Biol. 8, 207–220.
Partida-Martinez, L.P., and Hertweck, C. (2007). A gene cluster encoding rhi-
zoxin biosynthesis in ‘‘Burkholderia rhizoxina’’, the bacterial endosymbiont of
the fungus Rhizopus microsporus. ChemBioChem 8, 41–45.
Hertweck, C. (2009). The biosynthetic logic of polyketide diversity. Angew.
Pettit, G.R., Xu, J.P., Chapuis, J.C., Pettit, R.K., Tackett, L.P., Doubek, D.L.,
Hooper, J.N.A., and Schmidt, J.M. (2004). Antineoplastic agents. 520.
Isolation and structure of irciniastatins A and B from the Indo-Pacific marine
sponge Ircinia ramosa. J. Med. Chem. 47, 1149–1152.
Chem. Int. Ed. Engl. 48, 4688–4716.
Irschik, H., Kopp, M., Weissman, K.J., Buntin, K., Piel, J., and Mu¨ ller, R. (2010).
Analysis of the sorangicin gene cluster reinforces the utility of a combined
phylogenetic/retrobiosynthetic analysis for deciphering natural product
assembly by trans-AT PKS. ChemBioChem 11, 1840–1849.
Piel, J. (2002). A polyketide synthase-peptide synthetase gene cluster from an
uncultured bacterial symbiont of Paederus beetles. Proc. Natl. Acad. Sci. USA
99, 14002–14007.
Iwasaki, S., Namikoshi, M., Kobayashi, H., Furukawa, J., Okuda, S., Itai, A.,
Kasuya, A., Iitaka, Y., and Sato, Z. (1986). Studies on macrocyclic lactone anti-
Piel, J. (2009). Metabolites from symbiotic bacteria. Nat. Prod. Rep. 26,
biotics. VIII. Absolute structures of rhizoxin and
a related compound.
338–362.
J. Antibiot. (Tokyo) 39, 424–429.
Piel, J. (2010). Biosynthesis of polyketides by trans-AT polyketide synthases.
Jez, J.M., Ferrer, J.L., Bowman, M.E., Dixon, R.A., and Noel, J.P. (2000).
Dissection of malonyl-coenzyme A decarboxylation from polyketide formation
in the reaction mechanism of a plant polyketide synthase. Biochemistry 39,
890–902.
Nat. Prod. Rep. 27, 996–1047.
Piel, J., Hui, D.Q., Wen, G.P., Butzke, D., Platzer, M., Fusetani, N., and
Matsunaga, S. (2004a). Antitumor polyketide biosynthesis by an uncultivated
bacterial symbiont of the marine sponge Theonella swinhoei. Proc. Natl.
Acad. Sci. USA 101, 16222–16227.
Kinoshita, K., Williard, P.G., Khosla, C., and Cane, D.E. (2001). Precursor-
directed biosynthesis of 16-membered macrolides by the erythromycin poly-
ketide synthase. J. Am. Chem. Soc. 123, 2495–2502.
Piel, J., Wen, G.P., Platzer, M., and Hui, D.Q. (2004b). Unprecedented diversity
of catalytic domains in the first four modules of the putative pederin polyketide
synthase. ChemBioChem 5, 93–98.
¨
Koglin, A., Lohr, F., Bernhard, F., Rogov, V.V., Frueh, D.P., Strieter, E.R., Mofid,
M.R., Gu¨ ntert, P., Wagner, G., Walsh, C.T., et al. (2008). Structural basis for the
selectivity of the external thioesterase of the surfactin synthetase. Nature 454,
907–911.
Pohl, N.L., Gokhale, R.S., Cane, D.E., and Khosla, C. (1998). Synthesis and
incorporation of an N-acetylcysteamine analogue of methylmalonyl-CoA by
a modular polyketide synthase. J. Am. Chem. Soc. 120, 11206–11207.
Kusebauch, B., Busch, B., Scherlach, K., Roth, M., and Hertweck, C. (2009).
Polyketide-chain branching by an enzymatic Michael addition. Angew.
Chem. Int. Ed. Engl. 48, 5001–5004.
Sambrook, J., and Russell, D.W. (2000). Molecular cloning: a laboratory
manual (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press).
Lackner, G., Moebius, N., Partida-Martinez, L., and Hertweck, C. (2011a).
Complete genome sequence of Burkholderia rhizoxinica, an Endosymbiont
of Rhizopus microsporus. J. Bacteriol. 193, 783–784.
Schwarzer, D., Mootz, H.D., Linne, U., and Marahiel, M.A. (2002).
Regeneration of misprimed nonribosomal peptide synthetases by type II thio-
esterases. Proc. Natl. Acad. Sci. USA 99, 14083–14088.
Lackner, G., Moebius, N., Partida-Martinez, L.P., Boland, S., and Hertweck, C.
(2011b). Evolution of an endofungal lifestyle: Deductions from the Burkholderia
rhizoxinica genome. BMC Genomics 12, 210.
Staunton, J., and Weissman, K.J. (2001). Polyketide biosynthesis: a millennium
review. Nat. Prod. Rep. 18, 380–416.
Steinmetz, M., and Richter, R. (1994). Easy cloning of mini-Tn10 insertions
Lopanik, N.B., Shields, J.A., Buchholz, T.J., Rath, C.M., Hothersall, J.,
˚
Haygood, M.G., Hakansson, K., Thomas, C.M., and Sherman, D.H. (2008).
from the Bacillus subtilis chromosome. J. Bacteriol. 176, 1761–1763.
Tang, Y., Koppisch, A.T., and Khosla, C. (2004). The acyltransferase
homologue from the initiation module of the R1128 polyketide synthase is an
acyl-ACP thioesterase that edits acetyl primer units. Biochemistry 43, 9546–
9555.
In vivo and in vitro trans-acylation by BryP, the putative bryostatin pathway
acyltransferase derived from an uncultured marine symbiont. Chem. Biol.
15, 1175–1186.
Marchuk, D., Drumm, M., Saulino, A., and Collins, F.S. (1991). Construction of
T-vectors, a rapid and general system for direct cloning of unmodified PCR
products. Nucleic Acids Res. 19, 1154.
Teta, R., Gurgui, M., Helfrich, E.J.N., Ku¨ nne, S., Schneider, A., Van Echten-
Deckert, G., Mangoni, A., and Piel, J. (2010). Genome mining reveals trans-
AT polyketide synthase directed antibiotic biosynthesis in the bacterial phylum
bacteroidetes. ChemBioChem 11, 2506–2512.
Menzella, H.G., Carney, J.R., and Santi, D.V. (2007). Rational design and
assembly of synthetic trimodular polyketide synthases. Chem. Biol. 14,
143–151.
Vergnolle, O., Hahn, F., Baerga-Ortiz, A., Leadlay, P.F., and Andexer, J.N.
(2011). Stereoselectivity of isolated dehydratase domains of the borrelidin pol-
yketide synthase: implications for cis double bond formation. ChemBioChem
12, 1011–1014.
Minto, R.E., and Townsend, C.A. (1997). Enzymology and molecular biology of
aflatoxin biosynthesis. Chem. Rev. 97, 2537–2556.
Moldenhauer, J., Chen, X.H., Borriss, R., and Piel, J. (2007). Biosynthesis of the
antibiotic bacillaene, the product of a giant polyketide synthase complex of the
trans-AT family. Angew. Chem. Int. Ed. Engl. 46, 8195–8197.
Wong, F.T., Jin, X., Mathews, I.I., Cane, D.E., and Khosla, C. (2011). Structure
and mechanism of the trans-acting acyltransferase from the disorazole syn-
thase. Biochemistry 50, 6539–6548.
Moldenhauer, J., Go¨ tz, D.C.G., Albert, C.R., Bischof, S.K., Schneider, K.,
Su¨ ssmuth, R.D., Engeser, M., Gross, H., Bringmann, G., and Piel, J. (2010).
The final steps of bacillaene biosynthesis in Bacillus amyloliquefaciens
FZB42: direct evidence for beta,gamma dehydration by a trans-acyltransfer-
ase polyketide synthase. Angew. Chem. Int. Ed. Engl. 49, 1465–1467.
Wu, J., Hothersall, J., Mazzetti, C., O’Connell, Y., Shields, J.A., Rahman, A.S.,
Cox, R.J., Crosby, J., Simpson, T.J., Thomas, C.M., and Willis, C.L. (2008).
In vivo mutational analysis of the mupirocin gene cluster reveals labile
points in the biosynthetic pathway: the ‘‘leaky hosepipe’’ mechanism.
ChemBioChem 9, 1500–1508.
338 Chemistry & Biology 19, 329–339, March 23, 2012 ª2012 Elsevier Ltd All rights reserved