Paper
Time resolved luminescence spectra proved to be an
important tool to understand the decay process and the emis-
sive nature of the complexes in different polarity solvent. All the
complexes display a bi-exponential decay nature irrespective of
solvent polarity and the decay plot for the complex 1 is shown in
Fig. 10b, whereas complexes 2 and 3 are given in ESI Fig. 17a
RSC Advances
5 D. M. Epstein, S. Choudhary, M. R. Churchill, K. M. Keil,
A. V. Eliseev and J. R. Morrow, Inorg. Chem., 2001, 40,
1591–1596.
6 A. Hens, P. Mondal and K. K. Rajak, Dalton Trans., 2013,
14905–14915.
7 C. Dhenaut, I. Ledoux, I. D. W. Samuel, J. Zyss, M. Bourgault
and H. Le Bozec, Nature, 1995, 374, 339–342.
8 (a) M. Bourgault, K. Baum, H. Le Bozec, G. Pucetti, I. Ledoux
and J. Zyss, New J. Chem., 1998, 517–522; (b) T. Renouard,
H. Le Bozec, S. Brasselet, I. Ledoux and J. Zyss, Chem.
Commun., 1999, 871–872.
1
and b.† The value of s life time of the complexes was of similar
order with the lifetime with ligand which revealed that in
excited state the biexponential decay nature of the complexes
arise due to the contribution of the ligand moiety as well as the
complex itself. The smaller knr value (nearly ten times) for the
complexes compared to that of the isolated ligand suggested the
enhancement of uorescence intensity due to complexation.
9 K. Senechal, O. Maury, H. Le Bozec, I. Ledoux and J. Zyss, J.
Am. Chem. Soc., 2002, 124, 4560–4561.
1
0 P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin
and M. Gratzel, J. Am. Chem. Soc., 2005, 127, 808–809.
1 S. R. Jang, C. Lee, H. Choi, J. J. Ko, J. Lee, R. Vittal and
K. J. Kim, Chem. Mater., 2006, 18, 5604–5608.
Conclusion
1
1
1
1
1
So as a whole we have synthesized three zinc complexes con-
taining Schiff base with different stoichiometric ratio and its
photo physics has been characterized by absorption, emission,
time-resolved emission spectroscopic techniques as well as by
theoretical study. The highest emission intensity was observed
in trinuclear complex. In summary we conclude that the
incorporation of more zinc atom during complexation leads to
stronger uorescence intensity with gradually bathochromic
shi in solution of different polarity. The solvent polarity
function plot shows that excited state of the complexes are more
polar than the ground state. Moreover, it shows a regular
2 L. X. Chen, W. J. H. Jager, D. J. Gosztola, M. P. Niemczyk and
M. R. Wasielewski, J. Phys. Chem. B, 1997, 104, 1950–1960.
3 A. Ajayaghosh, P. Carol and S. Sreejith, J. Am. Chem. Soc.,
2
005, 127, 14962–14963.
4 A. E. Dennis and R. C. Smith, Chem. Commun., 2007, 4641–
643.
5 D. C. Freeman and C. E. White, J. Am. Chem. Soc., 1956, 78,
678–2682.
4
2
1
1
6 C. E. White and F. Cuttitta, Anal. Chem., 1959, 31, 2083–2087.
7 R. M. Dagnall, R. Smith and T. S. West, J. Chem. Soc. A, 1966,
1595–1598.
2
increasing trade of life time (s ) as the polarity of investigated
solvent is increased. The quantum yield as well as radiative rate
18 Y. Hamada, T. Sano, M. Fujita, T. Fujii, Y. Nishio and
K. Shibata, Jpn. J. Appl. Phys., Part 2, 1993, 32, L511–L513.
19 T. Sano, Y. Nishio, Y. Hamada, H. Takahashi, T. Usuki and
K. Shibata, J. Mater. Chem., 2000, 10, 157–161.
2
constant (k ) value is signicantly monitored by solvent polarity
r
while the non radiative rate constant values (k ) remain almost
nr
constant in the complexes.
0 (a) M. Shimizu and T. Hiyama, Organic Fluorophores
Exhibiting Highly Efficient Photoluminescence in the Solid
State, Chem.–Asian J., 2010, 5, 1516–1531; (b)
K. T. Kamtekar, A. P. Monkman and M. R. Bryce, Recent
Advances in White Organic Light-Emitting Materials and
Devices (WOLEDs), Adv. Mater., 2010, 22, 572–582.
1 (a) S. S. Sun, J. A. Anspach, A. J. Lees and P. Y. Zavalij,
Organometallics, 2002, 21, 685–693; (b) F. Y. Wu, Z. Li,
L. Guo, X. Wang, M. H. Lin, Y. F. Zhao and Y. B. Jiang,
Org. Biomol. Chem., 2006, 4, 624–630; (c) D. Das,
B. G. Chand, K. K. Sarker, J. Dinda and C. Sinha,
Polyhedron, 2006, 25, 2333–2340; (d) V. Luxami and
S. Kumar, RSC Adv., 2012, 2, 8734–8740.
Acknowledgements
Amar Hens acknowledge UGC, New Delhi for the research
fellowship. We are also thankful to Department of Science and
Technology (DST), New Delhi, India for the data collection on
the CCD facility setup (Jadavpur University) under DST-FIST
program. We also acknowledge CAS, Department of Chem-
istry, Jadavpur University and DST-PURSE program for other
facilities. The author acknowledges Ashok Sasmal of Jadavpur
University, for help in weak interaction calculation.
2
22 G.-X. Liu, Y.-Y. Xu, Y. Wang, S. Nishihara and X.-M. Ren,
Inorg. Chim. Acta, 2010, 363, 3932–3938.
References
1
M. Maiti, D. Sadhukhan, S. Thakurta, S. Roy, G. Pilet, 23 (a) A. Sarkar, A. K. Ghosh, V. Bertolasi and D. Ray, Dalton
R. J. Butcher, A. Nonat, L. J. Charbonni `e re and S. Mitra,
Inorg. Chem., 2008, 51, 12176–12187.
S. Sen, P. Talukder, S. K. Dey, S. Mitra, G. Rosair,
D. L. Hughes, G. P. A. Yap, G. G. Pilet, V. Gramlich and
T. Matsushita, Dalton Trans., 2006, 1758–1767.
Trans., 2012, 1889–1896; (b) L. J. Daumann, K. E. Dalle,
G. Schenk, R. P. McGeary, P. V. Bernhardt, D. L. Ollis and
L. R. Gahan, Dalton Trans., 2012, 1695–1708; (c) Z. Xu,
J. Yoon and D. R. Spring, Chem. Soc. Rev., 2010, 39, 1996–
2006.
2
3
4
P. Bhattacharya, J. Parr and A. T. Ross, J. Chem. Soc., Dalton 24 (a) G. Masanta, C. S. Lim, H. J. Kim, J. H. Han, H. M. Kim and
Trans., 1998, 3149–3150.
B. R. Cho, J. Am. Chem. Soc., 2011, 133, 5698–5700; (b)
H.-Y. Lin, P.-Y. Cheng, C.-F. Wan and A.-T. Wu, Analyst,
2012, 137, 4415–4417; (c) Y. Mikata, A. Yamashita,
R. T. Ruck and E. N. Jacobsen, J. Am. Chem. Soc., 2002, 124,
2882–2883.
This journal is © The Royal Society of Chemistry 2015
RSC Adv., 2015, 5, 4219–4232 | 4231