Page 5 of 6
ACS Medicinal Chemistry Letters
Class Dual Histone Deacetylase-Proteasome Inhibitor.
J. Med. Chem. 2018, 61, 10299-10309.
(35) Schüler, M.; O’Hagan, D.; Slawin, A. M. Z. The vicinal
F-C-C-F moiety as a tool for influencing peptide con-
formation. Chem. Commun. 2005, 4324-4326.
(36) Molnꢀr, I. G.; Gilmour, R. Catalytic Difluorination of
Olefins. J. Am. Chem. Soc. 2016, 138, 5004-5007.
(37) Banik, S. M.; Medley, J. W.; Jacobsen, E. N. Catalytic,
Diastereoselective 1,2-Difluorination of Alkenes. J. Am.
Chem. Soc. 2016, 138, 5000-5003.
(38) Sarie, J. C.; Thiehoff, C.; Mudd, R. J.; Daniliuc, C. G.;
Kehr, G.; Gilmour, R. Deconstructing the Catalytic,
Vicinal Difluorination of Alkenes: HF-Free Synthesis
and Structural Study of p-TolIF2. J. Org. Chem. 2017,
82, 11792-11798.
(39) Scheidt, F.; Schäfer, M.; Sarie, J. C.; Daniliuc, C. G.;
Molloy, J. J.; Gilmour, R. Enantioselective, Catalytic
Vicinal Difluorination of Alkenes. Angew. Chem. Int.
Ed. 2018, 57, 16431–16435.
(40) Haj, M. K.; Banik, S. M.; Jacobsen, E. N. Catalytic, En-
antioselective 1,2-Difluorination of Cinnamamides.
Org. Lett. 2019, DOI:10.1021/acs.orglett.9b00938.
(41) Bieliauskas, A. V.; Weerasinghe, S. V. W.; Pflum, M.
K. H. Structural requirements of HDAC inhibitors:
SAHA analogs functionalized adjacent to the
hydroxamic acid. Bioorganic Med. Chem. Lett. 2007,
17, 2216–2219.
1
2
3
4
5
6
7
8
(20) Walton, J. W.; Cross, J. M.; Riedel, T.; Dyson, P. J. Per-
fluorinated HDAC inhibitors as selective anticancer
agents. Org. Biomol. Chem. 2017, 15, 9186-9190.
(21) Molnár, I. G.; Thiehoff, C.; Holland, M. C.; Gilmour, R.
Catalytic, Vicinal Difluorination of Olefins: Creating a
Hybrid, Chiral Bioisostere of the Trifluoromethyl and
Ethyl Groups. ACS Catal. 2016, 6, 7167-7173.
(22) Erdeljac, N.; Kehr, G.; Ahlqvist, M.; Knerr, L.; Gil-
mour, R. Exploring physicochemical space via a bi-
oisostere of the trifluoromethyl and ethyl groups
(BITE): attenuating lipophilicity in fluorinated ana-
logues of Gilenya® for multiple sclerosis. Chem. Com-
mun. 2018, 54, 12002-12005.
(23) Jagodzinska, M.; Huguenot, F.; Candiani, G.; Zanda, M.
Assessing the Bioisosterism of the Trifluoromethyl
Group with a Protease Probe. ChemMedChem, 2009, 4,
49-51.
(24) O’Hagan, D. Understanding organofluorine chemistry.
An introduction to the C-F bond. Chem. Soc. Rev. 2008,
37, 308-319.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(25) Hunter, L. The C-F bond as a conformational tool in or-
ganic and biological chemistry. Beilstein J. Org. Chem.
2010, 6, 1-14.
(42) Mackwitz, M. K. W.; Hamacher, A.; Osko, J. D.; Held,
J.; Schöler, A.; Christianson, D. W.; Kassack, M. U.;
Hansen, F. K. Multicomponent Synthesis and Binding
Mode of Imidazo[1,2-a]Pyridine-Capped Selective
HDAC6 Inhibitors. Org. Lett. 2018, 20, 3255–3258.
(43) West, A. C.; Johnstone, R. W. New and Emerging
HDAC Inhibitors for Cancer Treatment. J. Clin. Invest.
2014, 124, 30–39.
(26) Zimmer, L. E.; Sparr, C.; Gilmour, R. Fluorine confor-
mational effects in organocatalysis: an emerging strate-
gy for molecular design. Angew. Chem. Int. Ed. 2011,
50, 11860-11871.
(27) Zimmer, L. E.; Sparr, C.; Gilmour, R. Konformative
Fluoreffekte in der Organokatalyse: eine neuartige
Strategie zum molekularen Design. Angew. Chem.
2011, 123, 12062-12074.
(28) Scheidt, F.; Selter, P.; Santschi, N.; Holland, M. C.;
Dudenko, D. V.; Daniliuc, C.; Mück-Lichtenfeld, C.;
Hansen, M. R.; Gilmour, R. Emulating natural product
conformation by cooperative, non-covalent fluorine
interactions. Chem. Eur. J. 2017, 23, 6142 – 6149.
(29) Thiehoff, C.; Rey, Y. P.; Gilmour, R. The fluorine
gauche effect: a brief history. Isr. J. Chem. 2017, 57,
92-100.
(30) Aufiero, M.; Gilmour, R. Informing molecular design
by stereoelectronic theory: the fluorine gauche effect in
catalysis. Acc. Chem. Res. 2018, 51, 1701-1710.
(31) Huchet, Q. A.; Kuhn, B.; Wagner, B.; Kratochwil, N.
A.; Fischer, H.; Kansy, M.; Zimmerli, D.; Carreira, E.
M.; Müller, K. Fluorination Patterning: A Study of
Structural Motifs That Impact Physicochemical Proper-
ties of Relevance to Drug Discovery. J. Med. Chem.
2015, 58, 9041-9060.
(32) Yamamoto, I.; Jordan, M. J. T.; Gavande, N.;
Doddareddy, M. R.; Chebib, M.; Hunter, L. The enanti-
omers of syn-2,3-difluoro-4-aminobutyric acid elicit
opposite responses at the GABAC receptor. Chem.
Commun. 2012, 48, 829-831.
(33) Hunter, L.; Jolliffe, K. A.; Jordan, M. J. T.; Jensen, P.;
Macquart, R. B. Synthesis and Conformational Analysis
of α,β-Difluoro-γ-amino Acid Derivatives. Chem. Eur.
J. 2011, 17, 2340-2343.
(34) O’Hagan, D.; Rzepa, H. S.; Schüler, M.; Slawin, A. M.
Z. The vicinal difluoro motif: The synthesis and con-
formation of erythro- and threo- diastereoisomers of
1,2-difluorodiphenylethanes, 2,3-difluorosuccinic acids
and their derivatives. Beilstein J. Org. Chem. 2006, 2,
19.
(44) Meanwell, N. A. Fluorine and Fluorinated Motifs in the
Design and Application of Bioisosteres for Drug De-
sign. J. Med. Chem. 2018, 61, 5822-5880.
ACS Paragon Plus Environment