Tang SY, et al. Sci China Chem May (2013) Vol.56 No.5
631
Angew Chem Int Ed, 2010, 49: 8946–8949; h) Dai HX, Yu JQ.
Pd-catalyzed oxidative ortho-C–H borylation of arenes. J Am Chem
Soc, 2012, 134: 134–137; i) Wasa M, Engle KM, Lin DW, Yoo EJ,
Yu JQ. Pd(II)-catalyzed enantioselective C–H activation of cyclo-
propanes. J Am Chem Soc, 2011, 133: 19598–19601
the harmonic oscillator model. Tetrahedron Lett, 1972, 13: 3839–
3842; b) Krygowski TM, Cyrañski MK. Structural aspects of aroma-
ticity. Chem Rev, 2001, 101: 1385–1419
17 NICS(1) estimated at 1A above the center of the ring. For details see:
Schleyer PvR, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes
NJR. Nucleus-independent chemical shifts: A simple and efficient
aromaticity probe. J Am Chem Soc, 1996, 118: 6317–6318
18 a) Yu HZ, Jiang YY, Fu Y, Liu L. Alternative mechanistic explana-
tion for ligand-dependent selectivities in copper-catalyzed N- and
O-arylation reactions. J Am Chem Soc, 2010, 132: 18078–18091; b)
Zhang SL, Liu L, Fu Y, Guo QX. Theoretical study on copper(I)-
catalyzed cross-coupling between aryl halides and amides.
Organometallics, 2007, 26: 4546–4554
19 Casitas A, King AE, Parella T, Costas M, Stahl SS, Ribas X. Direct
observation of CuI/CuIII redox steps relevant to Ullmann-type cou-
pling reactions. Chem Sci, 2010, 1: 326–330
20 Note that O-Int1 is found to be the most stable. See Supporting
Information for details.
21 a) Ribas X, Jackson DA, Donnadieu B, Mahia J, Parella T, Xifra R,
Hedman B, Hodgson KO, Llobet A, Stack TDP. Aryl C–H activation
by CuII to form an organometallic aryl–CuIII species: A novel twist
on copper disproportionation. Angew Chem In Ed, 2002, 41: 2991–
2994; b) King AE, Brunold TC, Stahl SS. Mechanistic study of cop-
per-catalyzed aerobic oxidative coupling of arylboronic esters and
methanol: Insights into an organometallic oxidase reaction. J Am
Chem Soc, 2009, 131: 5044–5045
22 Huffman LM, Casitas A, Font M, Canta M, Costas M, Ribas X, Stahl
SS. Observation and mechanistic study of facile C–O bond formation
between a well-defined aryl-copper(III) complex and oxygen nucle-
ophiles. Chem Eur J, 2011, 17: 10642–10649
23 Sartori G, Maggi R. Use of solid catalysts in Friedel–Crafts acylation
reactions. Chem Rev, 2006, 106: 1077–1104
24 Kuang GC, Guha PM, Brotherton WS, Simmons JT, Stankee LA,
Nguyen BT, Clark RJ, Zhu L. Experimental investigation on the mech-
anism of chelation-assisted, copper(II) acetate-accelerated azide-alkyne
cycloaddition. J Am Chem Soc, 2011, 133: 13984–14001
25 An alternative intermediate (i.e. Cu-nitrene may also be involved as
proposed by Buchwald et al. for the C–N cyclization. However, our
calculation shows that the formation of Cu-nitrene is highly
endergonic (+35.2 kcal/mol) and therefore unfavorable (Figure 8).
26 For details about the disfavored routes, see Supporting Information.
27 Jones GO, Liu P, Houk KN, Buchwald SL. Computational explorations
of mechanisms and ligand-directed selectivities of copper-catalyzed
Ullmann-type reactions. J Am Chem Soc, 2010, 132: 6205–6213
28 In the case of C–O formation reaction with radical scavenger, the
small decrease of yield is probably attributed to radical species or
other alkene-promoted side-reactions. To further clarify the radical
pathways, we calculated the important radical species O-6 and O-8.
The data suggested that the radical pathway might be not plausible.
29 Lanci MP, Remy MS, Kaminsky W, Mayer JM, Sanford MS. Oxida-
tively induced reductive elimination from ((t)Bu2bpy)Pd(Me)2: Pal-
ladium(IV) intermediates in a one-electron oxidation reaction. J Am
Chem Soc, 2009, 131: 15618–15620
5
6
a) Wendlandt AE, Suess AM, Stahl SS. Copper-catalyzed aerobic
oxidative C–H functionalizations: Trends and mechanistic insights.
Angew Chem Int Ed, 2011, 50: 11062–11087; b) Yang L, Lu Z, Stahl
SS. Regioselective copper-catalyzed chlorination and bromination of
arenes with O2 as the oxidant. Chem Commun, 2009, 6460–6462
a) Li Z, Bohle DS, Li CJ. Cu-catalyzed cross-dehydrogenative cou-
pling: A versatile strategy for C-C bond formations via the oxidative
activation of sp(3) C–H bonds. Proc Natl Acad Sci U S A, 2006, 103:
8928–8933; b) Do HQ, Daugulis O. Copper-catalyzed arylation of
heterocycle C–H bonds. J Am Chem Soc, 2007, 129: 12404–12405; c)
Do HQ, Daugulis O. Copper-catalyzed arylation and alkenylation of
polyfluoroarene C–H bonds. J Am Chem Soc, 2008, 130: 1128–1129
Chen X, Hao XS, Goodhue CE, Yu JQ. Cu(II)-catalyzed functionali-
zations of aryl C–H bonds using O2 as an oxidant. J Am Chem Soc,
2006, 128: 6790–6791
Brasche G, Buchwald SL. C–H functionalization/C–N bond for-
mation: Copper-catalyzed synthesis of benzimidazoles from amidines.
Angew Chem Int Ed, 2008, 47: 1932–1934
a) Ueda S, Nagasawa H. Synthesis of 2-arylbenzoxazoles by copper-
catalyzed intramolecular oxidative C–O coupling of benzanilides.
Angew Chem Int Ed, 2008, 47: 6411–6413; b) Ueda S, Nagasawa H.
Copper-catalyzed synthesis of benzoxazoles via a regioselective C–H
functionalization/C–O bond formation under an air atmosphere. J
Org Chem 2009, 74: 4272–4277
7
8
9
10 Ribas X, Calle C, Poater A, Casitas A, Gomez L, Xifra R, Parella T
Benet-Buchholz J, Schweiger A, Mitrikas G, Sola M, Llobet A, Stack
TD. Facile C–H bond cleavage via a proton-coupled electron transfer
involving a C–H...Cu(II) interaction. J Am Chem Soc, 2010, 132:
12299–12306
11 a) Yao B, Wang DX, Huang ZT, Wang MX. Room-temperature aer-
obic formation of a stable aryl–Cu(III) complex and its reactions with
nucleophiles: Highly efficient and diverse arene C–H functionaliza-
tions of azacalix[1]arene[3]pyridine. Chem Commun, 2009, 2899–
2901; b) Wang ZL, Zhan L, Wang MX. Regiospecific functionaliza-
tion of azacalixaromatics through copper-mediated aryl C–H activa-
tion and C–O bond formation. Org Lett, 2011, 13: 6560–6563
12 a) Huffman LM, Casitas A, Font M, Canta M, Costas M, Ribas X,
Stahl SS. Observation and mechanistic study of facile C–O bond
formation between a well-defined aryl-copper(III) complex and oxy-
gen nucleophiles. Chem Eur J, 2011, 17: 10643–10650; b) Huffman
LM, Stahl SS. Carbon-nitrogen bond formation involving well-
defined aryl-copper(III) complexes. J Am Chem Soc, 2008, 130:
9196–9197
13 Garcia-Lopez J, Yanez-Rodriguez V, Roces L, Garcia-Granda S,
Martinez A, Guevara-Garcia A, Castro GR, Jimenez-Villacorta F,
Iglesias MJ, Lopez Ortiz F. Synthesis and characterization of a cou-
pled binuclear Cu(I)/Cu(III) complex. J Am Chem Soc, 2010, 132:
10665–10667
14 a) Chen B, Hou XL, Li YX, Wu YD. Mechanistic understanding of
the unexpected meta selectivity in copper-catalyzed anilide C–H
bond arylation. J Am Chem Soc, 2011, 133: 7668–7671; b) Wang M,
Fan T, Lin Z. DFT Studies on copper-catalyzed arylation of aromatic
C–H Bonds. Organometallics, 2012, 31: 560–569; c) Santoro S, Liao
RZ, Himo F. Theoretical study of mechanism and selectivity of copper-
catalyzed C–H bond amidation of indoles. J Org Chem, 2011, 76:
9246–9252
15 a) Gorelsky SI, Lapointe D, Fagnou K. Analysis of the concerted
metalation–deprotonation mechanism in palladium-catalyzed direct
arylation across a broad range of aromatic substrates. J Am Chem Soc,
2008, 130: 10848–10849; b) García-Cuadrado D, Mendoza P De;
Braga AAC, Maseras F, Echavarren AM. Proton-abstraction mecha-
nism in the palladium-catalyzed intramolecular arylation: Substituent
effects. J Am Chem Soc, 2007, 129: 6880–6886
30 The wavefunction is stable under the perturbations considered.
31 a) Becke AD. Density-functional thermochemistry. III. The role of
exact exchange. J Chem Phys, 1993, 98: 5648–5652; b) Perdew JP.
Density-functional approximation for the correlation energy of the
inhomogeneous electron gas. J Phys Rev B, 1986, 33: 8822–8824
32 Rassolov VA, Pople JA, Ratner MA, Windus TL. 6-31G* basis set
for atoms K through Zn. J Chem Phy, 1998, 109: 1223–1229
33 Pavelka M, Šimánek M, Šponer J, Burda JV. Copper cation interac-
tions with biologically essential types of ligands: A computational
DFT study. J Phys Chem A, 2006, 110: 4795–4809
34 a) Li Z, Fu Y, Zhang SL, Guo QX, Liu L. Heck-type reactions of
imine derivatives: A DFT study. Chem Asian J, 2010, 5: 1475–1486;
b) Shang R, Yang ZW, Wang Y, Zhang SL, Liu L. Palladium-
catalyzed decarboxylative couplings of 2-(2-azaaryl)acetates with
aryl halides and triflates. J Am Chem Soc, 2010, 132: 14391–14393;
c) Zhang SL, Fu Y, Shang R, Guo QX, Liu L. Theoretical analysis of
16 a) Kruszewski J, Krygowski TM. Definition of aromaticity Basing on