Journal of the American Chemical Society
Article
Synthesis of IDA. To a mixture of compound 3 (650 mg, 1.35
mmol) and potassium hydroxide (151 mg, 2.78 mmol) in acetonitrile
(6 mL) was added imidazole (645 mg, 9.48 mmol). The reaction
mixture was refluxed for 8 h and then cooled to room temperature.
After flash column chromatography (ethyl acetate/methanol = 25:2),
the crude product was washed with deionized water (15 mL) and
dried under vacuum to obtain pure white compound IDA (255 mg,
the Army Research Office under award number W911NF-12-1-
0252. The self-assembly characterization was funded by an NSF
CAREER grant (DMR-1351293). H.T. thanks the Department
of Defense (DOD) for the National Defense Science &
Engineering Graduate (NDSEG) Fellowship. K.L.K. thanks the
Army Basic Research Program for funding. We thank Dr. J. Xia
and Dr. S. Wei for helpful discussions and D. Hanifi for the
assistance with the GISAXS studies.
1
40.4%). H NMR (400 MHz, CDCl3, 298 K): δ = 7.46 (s, 1H), 7.44
(d, J = 8.4 Hz, 4H), 7.06 (s, 1H), 6.91 (s, 1H), 6.84 (d, J = 8.8 Hz,
2H), 6.81 (d, J = 8.4 Hz, 2H), 3.96 (m, 6H), 1.78 (m, 6H), 1.47 (m,
4H), 1.34 (m, 6H), 0.91 (t, J = 6.8 Hz, 3H). 13C NMR (100 MHz,
CDCl3, 298 K): δ = 159.90, 159.67, 137.10, 134.04, 134.04, 129.50,
118.77, 114.67, 114.62, 113.91, 113.65, 81,42, 81.21, 73.01, 72.87,
68.16, 67.72, 46.94, 31.56, 31.03, 29.12, 28.97, 26.34, 25.69, 25.62,
22.60, 14.03. MS (FAB+): calcd for [M + H]+ m/z = 469.3, found m/
z: 469.4; HR-MS (FAB+): calcd for C31H37O2N2 [M + H]+ m/z =
469.2855, found m/z: 469.2860.
Synthesis of PS-b-PAA and P(S-co-BrS)-b-PAA. PS(7K)-b-PAA-
(8.1K) was synthesized by reversible addition−fragmentation chain
transfer (RAFT) according to previously reported literature.21
Likewise, P[S(5.4K)-co-BrS(0.7K)]-b-PAA(8.1K) was synthesized by
RAFT with 10 mol % incorporation of BrS.
Computational Details. Theoretical calculations were carried out
using the Gaussian 09 program package.56 The geometries of the
monomer model and the diacetylene model were optimized by density
functional theory (DFT) calculations, using the hybrid B3LYP
functional57 and the 6-31G* basis set.58 At the optimized geometries,
time-dependent (TD) DFT calculations were performed using the
range-separated hybrid CAM-B3LYP functional,59 with solvent effects
of chloroform taken into account by the polarizable continuum model
(PCM).60
Thin-Film Preparation. Solutions of PS-b-P(AA-sg-IDA) (6 mM in
dioxane) were spin-coated (2500 rpm, 45 s) on silicon chips. The
thicknesses of the films were 60−70 nm. The chips were inserted into
the cuvette holder with an angle about ∼45° to the incident light for
the optical tests.
Solvent Annealing. Solvent vapor annealing was optimized by
varying the solvent (toluene, benzene, chloroform, acetone, THF,
dioxane, and DMF) and annealing time (0.5 h, 1 h, 2 h, 4 h, 12 h, 36 h,
and 72 h). Thin films were analyzed by AFM. We found that the
optimal solvent vapor annealing conditions for our system involves
annealing in a 200 mL closed jar with DMF vapor for 36 h.
Photopatterning. A quartz mask with micron-sized chromium
patterns was aligned to the thin films in a nitrogen atmosphere.
Irradiation at 254 nm for 20 s afforded the cross-linked thin films and
polymerized the IDA monomers. Then the films were washed with
dioxane 3× and dried with a nitrogen stream. The micropatterns were
imaged with confocal microscopy, using different wavelength channels,
where the intensity of each channel was read under the same gain.
REFERENCES
■
(1) Green, M. A. Prog. Photovoltaics 2001, 9, 123.
(2) Ito, H.; Willson, C. G. Polym. Eng. Sci. 1983, 23, 1012.
(3) Jung, B.; Satish, P.; Bunck, D. N.; Dichtel, W. R.; Ober, C. K.;
Thompson, M. O. ACS Nano 2014, 8, 5746−5756.
(4) Campos, L. M.; Garcia-Garibay, M. A. In Reviews of Reactive
Intermediate Chemistry; Platz, M. S., Moss, R. A., Maitland Jones, J.,
Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, 2007; p 271.
(5) Leibfarth, F. A.; Kang, M.; Ham, M.; Kim, J.; Campos, L. M.;
Gupta, N.; Moon, B.; Hawker, C. J. Nat. Chem. 2010, 2, 207.
(6) Leibfarth, F. A.; Wolffs, M.; Campos, L. M.; Delany, K.; Treat,
N.; Kade, M. J.; Moon, B.; Hawker, C. J. Chem. Sci. 2012, 3, 766.
(7) Campos, L. M.; Dang, H.; Ng, D.; Yang, Z.; Martinez, H. L.;
Garcia-Garibay, M. A. J. Org. Chem. 2002, 67, 3749.
(8) Toda, F. Acc. Chem. Res. 1995, 28, 480.
(9) Ramamurthy, V.; Venkatesan, K. Chem. Rev. 1987, 87, 433.
(10) Dou, L.; Zheng, Y.; Shen, X.; Wu, G.; Fields, K.; Hsu, W.-C.;
Zhou, H.; Yang, Y.; Wudl, F. Science 2014, 343, 272.
(11) Meng, H.; Perepichka, D. F.; Bendikov, M.; Wudl, F.; Pan, G.
Z.; Yu, W.; Dong, W.; Brown, S. J. Am. Chem. Soc. 2003, 125, 15151.
(12) Lauher, J. W.; Fowler, F. W.; Goroff, N. S. Acc. Chem. Res. 2008,
41, 1215.
(13) Colson, J. W.; Dichtel, W. R. Nat. Chem. 2013, 5, 453.
(14) Inokuma, Y.; Kawano, M.; Fujita, M. Nat. Chem. 2011, 3, 349.
(15) Xu, L.-P.; Yan, C.-J.; Wan, L.-J.; Jiang, S.-G.; Liu, M.-H. J. Phys.
Chem. B 2005, 109, 14773.
(16) Chan, Y.-H.; Lin, J.-T. s.; Chen, I. W. P.; Chen, C.-h. J. Phys.
Chem. B 2005, 109, 19161.
(17) Lu, Y.; Yang, Y.; Sellinger, A.; Lu, M.; Huang, J.; Fan, H.;
Haddad, R.; Lopez, G.; Burns, A. R.; Sasaki, D. Y.; Shelnutt, J.; Brinker,
C. J. Nature 2001, 410, 913.
(18) Sun, A.; Lauher, J. W.; Goroff, N. S. Science 2006, 312, 1030.
(19) Cohen, M. J.; Garito, A. F.; Heeger, A. J.; MacDiarmid, A. G.;
Mikulski, C. M.; Saran, M. S.; Kleppinger, J. J. Am. Chem. Soc. 1976,
98, 3844.
(20) Hasegawa, M. In Advances in Physical Organic Chemistry; Bethell,
D., Ed.; Academic Press: New York, 1995; Vol. 30, p 117.
(21) Tran, H.; Gopinadhan, M.; Majewski, P. W.; Shade, R.; Steffes,
V.; Osuji, C. O.; Campos, L. M. ACS Nano 2013, 7, 5514.
(22) Wegner, G. Z. Naturforsch. 1969, 246, 824.
ASSOCIATED CONTENT
* Supporting Information
■
(23) Kraabel, B.; Hulin, D.; Aslangul, C.; Lapersonne-Meyer, C.;
Schott, M. Chem. Phys. 1998, 227, 83.
(24) McQuade, D. T.; Pullen, A. E.; Swager, T. M. Chem. Rev. 2000,
S
Complementary characterization data, figures, and computa-
tional results. This material is available free of charge via the
100, 2537.
(25) Xu, Q.; Lee, S.; Cho, Y.; Kim, M. H.; Bouffard, J.; Yoon, J. J. Am.
Chem. Soc. 2013, 135, 17751.
(26) Diegelmann, S. R.; Tovar, J. D. Macromol. Rapid Commun. 2013,
34, 1343.
(27) Pope, M.; Swenberg, C. E. Electronic Processes in Organic Crystals
and Polymers, 2nd ed.; Oxford University Press: New York, 1999.
(28) Kim, J.-H.; Lee, E.; Jeong, Y.-H.; Jang, W.-D. Chem. Mater. 2012,
24, 2356.
AUTHOR INFORMATION
■
Corresponding Authors
Notes
(29) Sun, X.; Chen, T.; Huang, S.; Li, L.; Peng, H. Chem. Soc. Rev.
2010, 39, 4244.
The authors declare no competing financial interest.
(30) Yoon, B.; Lee, S.; Kim, J.-M. Chem. Soc. Rev. 2009, 38, 1958.
(31) Xu, W. L.; Smith, M. D.; Krause, J. A.; Greytak, A. B.; Ma, S.;
Read, C. M.; Shimizu, L. S. Cryst. Growth Des. 2014, 14, 993.
(32) Xu, Y.; Smith, M. D.; Geer, M. F.; Pellechia, P. J.; Brown, J. C.;
Wibowo, A. C.; Shimizu, L. S. J. Am. Chem. Soc. 2010, 132, 5334.
ACKNOWLEDGMENTS
■
This research was funded by the Department of the Army Basic
Research Program and sponsored by the Edgewood Chemical
Biological Center. Financial support for L.Z. was provided by
13386
dx.doi.org/10.1021/ja507318u | J. Am. Chem. Soc. 2014, 136, 13381−13387