Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
natural water samples. Different concentrations of I2 (50, 100
and 150 mg L-1) were spiked to 100-fold diluted tap water and
lake water with NaI, respectively, and analyzed by the present
colorimetric method. As listed in Table 1, the removal rates
ranged from 92.6% to 70.4% in the iodine lake wastewater.
Besides, the I2-loaded wastewater samples were analyzed by
this visual assay and UV spectra. The detection results from
the presenting assay were well consistent with those tested by
UV spectra (Table 2). All the results unambiguously attested
that PTIBBL was qualified for practical application in efficient
treatment of radioiodine pollutants by utilizing the present
colorimetric assay.
Notes and references
DOI: 10.1039/C9CC08699D
1
2
N. Yoshida and J. Kanda, Science, 2012, 336, 1115-1116.
P. C. Burns, R. C. Ewing and A. Navrotsky, Science, 2012, 335,
1184-1188.
3
4
L. VanMiddlesworth and J. Handl, Health phys., 1997, 73(4),
647-650.
G. Mushkacheva, E. Rabinovich, V. Privalov, S. Povolotskaya,
V. Shorokhova, S. Sokolova, V. Turdakova, E. Ryzhova, P. Hall,
A. B. Schneider, D. L. Preston and E. Ron, Radiat. Res., 2006,
166, 715.
R. Dawson, A. Laybourn, R. Clowes, Y. Z. Khimyak, D. J.
Adams and A. I. Cooper, Macromolecules, 2009, 42, 8809-
8816.
5
6
7
8
T. Hertzsch, F. Budde, E. Weber and J. Hulliger, Angew.
Chemie. Int. Ed., 2002, 41, 2281-2284.
H. Zou, F. Yi, M. Song, X. Wang, L. Bian, W. Li, N. Pan and X.
Jiang, J. Hazard. Mater., 2019, 365, 81-87.
D. Banerjee, X. Chen, S. S. Lobanov, A. M. Plonka, X. Chan, J.
A.Daly, T. Kim, P. K. Thallapally and J. B. Parise, ACS Appl.
Mater. Interfaces, 2018, 10, 10622-10626.
X. Guo, Y. Tian, M. Zhang, Y. Li, R. Wen, X. Li, X. Li, Y. Xue, L.
Ma,C. Xia and S. Li, Chem. Mater., 2018, 30, 2299-2308.
9
Fig. 5 Optical images of the detection aqueous solution after addition of different
concentrations of I2 in the range of 8-210 mg L-1. (b) Linear relationship of the adjusted
intensity (I) versus the logarithm of I2 concentration from 8 to 210 mg L-1.
10 S. Das, P. Heasman, T. Ben and S. Qiu, Chem. Rev., 2017, 117,
1515-1563.
11 Y. Xu, S. Jin, H. Xu, A. Nagai and D. Jiang, Chem. Soc. Rev.,
2013, 42, 8012-8031.
12 S. Das, P. Heasman, T. Ben and S. Qiu, Chem. Rev., 2017, 117,
1515.
13 X. Qian, B. Wang, Z. Q. Zhu, H. X. Sun, F. Ren, P. Mu, C. Ma,
W. D. Liang and A. Li, J. Hazard. Mater., 2017, 338, 224-232.
14 Q. Sun, B. Aguila and S. Q. Ma, Trends in Chemistry, 2019, 1,
292-303.
15 S. Xiong, X. Tang, C. Pan, L. Li, J. Tang and G. Yu, ACS Appl.
Mat. Interfaces, 2019, 11, 27335-27342.
16 X. He, S.-Y. Zhang, X. Tang, S. Xiong, C. Ai, D. Chen, J. Tang, C.
Pan and G. Yu, Chem. Eng. J., 2019, 371, 314-318.
17 K. Yuan, C. Liu, C. Liu, S. Zhang, G. Yu, L. Yang, F. Yang and X.
Jian, Polymer, 2018, 151, 65-74.
Table 1 Adsorption results of iodine in natural water samples
Sample
C0 (mg L-1)
50
Ce (mg L-1)
3.9
qe (mg g-1)
184.4
Removal rate (%)
Tap water
92.2
90.3
67.9
92.6
91.1
70.4
100
9.7
361.2
150
48.1
3.7
407.6
Lake water
50
185.1
100
8.9
364.4
150
44.5
422.2
Table 2 Comparison of detection results obtained in the analysis of iodine wastewater
by this assay and UV spectra
18 K. Yuan, C. Liu, L. Zong, G. Yu, S. Cheng, J. Wang, Z. Weng and
X. Jian, ACS Appl. Mat. Interfaces, 2017, 9, 13201-13212.
19 K. Jie, H. Chen, P. Zhang, W. Guo, M. Li, Z. Yang and S. Dai,
Chem. Commun., 2018, 54, 12706-12709.
20 P. Wang, Q. Xu, Z. Li, W. Jiang, Q. Jiang and D. Jiang, Adv.
Mater., 2018, 1801991.
Sample
I2 capture by this assay (mg L-1)
I2 capture by UV spectra(mg L-1)
1
2
3
4
2.91
15.34
43.50
49.99
3.15
15.47
43.87
50.24
21 S. A, Y. Zhang, Z. Li, H. Xia, M. Xue, X. Liu and Y. Mu, Chem.
Commun., 2014, 50, 8495-8498.
In summary, we have rationally proposed a new type of
recyclable indole-based porous polymer for effective
extraction of iodine in aqueous media through the synergistic
effects of cation-π and electrostatic interactions. More
significantly, this capture behavior could be efficiently
detected via a visual colorimetric assay by taking advantage of
a smartphone. We anticipate that our strategy of developing
this innovative adsorption system could be greatly extended to
design and construct of advanced materials for the treatment
of radioactive wastes or removing pollutants from aqueous
environments.
22 H. Li, X. Ding and B. Han, Chem. Eur. J., 2016, 22, 11863-
11868.
23 G. Chang, Y. Wang, C. Wang, Y. Li, Y. Xu and L. Yang, Chem.
Commun., 2018, 54, 9785-9788.
24 P. Yang, L. Yang, Y. Wang, L. Song, J. Yang and G. Chang, J.
Mater. Chem. A, 2019, 7, 531-539.
25 L. Yang, Y. Ma, Y. Xu and G. Chang, Chem. Commun., 2019,
55, 11227-11230.
26 A. D. Awtrey, and R. E. Connick, J. Am. Chem. Soc., 1951, 73,
1842-1843.
27 C. T. Hsieh and H. Teng, Carbon, 2000, 38, 863-869.
28 H. Sun, P. La, R. Yang, Z. Zhu, W. Liang, B. Yang, A. Li and W.
Deng, J. Hazard. Mater., 2017, 321, 210-217.
29 H. Yorita, K. Otomo, H. Hiramatsu, A. Toyama, T. Miura and
H. Takeuchi, J. Am. Chem. Soc., 2008, 130, 15266-15267.
30 E. Hayon, T. Ibata, N. N. Lichtin and M. Simic, J.Phys. Chem.,
1972, 76, 2072-2078.
This work was financially supported by the National Natural
Science Foundation of China (No. 21973076, 21504073,
21202134, 11447215).
31 B. Zheng, X. Liu, J. Hu, F. Wang, X. Hu, Y. Zhu, X. Lv, J. Du and
D. Xiao, J. Hazard. Mater., 2019, 368, 81-89.
Conflicts of interest
There are no conflicts to declare.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins