Communications
Keywords: bromine–magnesium exchange · density functional
.
calculations · Grignardreaction · lithium · Schlenk equilibrium
[
1] a) P. Knochel, W. Dohle, N. Gommermann, F. F. Kneisel, F.
Kopp, T. Korn, I. Sapountzis, V. A. Vu, Angew. Chem. 2003, 115,
4438; Angew. Chem. Int. Ed. 2003, 42, 4302; b) A. E. Jensen, W.
Dohle, I. Sapountzis, D. M. Lindsay, V. A. Vu, P. Knochel,
Synthesis 2002, 565.
[
2] a) A. Krasovskiy, P. Knochel, Angew. Chem. 2004, 116, 3396;
Angew. Chem. Int. Ed. 2004, 43, 3333; b) H. Ren, A. Krasovskiy,
P. Knochel, Chem. Commun. 2005, 543; c) H. Ren, A. Krasov-
skiy, P. Knochel, Org. Lett. 2004, 6, 4215.
[
3] For the higher reactivity of triorganomagnesiates, see: a) K.
Kitagawa, A. Inoue, H. Shinokubo, K. Oshima, Angew. Chem.
2
000, 112, 2594; Angew. Chem. Int. Ed. 2000, 39, 2481; b) A.
Inoue, K. Kitagawa, H. Shinokubo, K. Oshima, J. Org. Chem.
001, 66, 4333; c) A. Inoue, K. Kitagawa, H. Shinokubo, K.
2
Oshima, Tetrahedron 2000, 56, 9601.
[
4] The B3LYP level of theory, with an SDD ECP and basis set on
Br and I and a correlation-consistent basis set on Mg, O, C, and
H, was used with the Gaussian 98 program package. a) Gaus-
sian 98 (RevisionA.11.1): M. J. Frisch et al., see Supporting
Information; b) A. D. Becke, J. Chem. Phys. 1993, 98, 5648;
c) S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200;
d) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785;
e) J. M. L. Martin, A. Sundermann, J. Chem. Phys. 2001, 114,
3
1
408; f) D. E. Woon, T. H. Dunning, Jr., J. Chem. Phys. 1993, 98,
358; g) E. R. Davidson, Chem. Phys. Lett. 1996, 260, 514; h) M.
Dolg, U. Wedig, H. Stoll, H. Preuss, J. Chem. Phys. 1987, 86, 866.
5] a) W. B. Farnham, J. C. Calabrese, J. Am. Chem. Soc. 1986, 108,
[
2449; b) H. J. Reich, D. P. Green, N. H. Phillips, J. P. Borst, I. L.
Reich, Phosphorus Sulfur Silicon Relat. Elem. 1992, 67, 83; c) M.
Müller, M. Brönstrup, O. Knopff, V. Schulze, R. W. Hoffmann,
Organometallics 2003, 22, 2931, and references therein.
6] a) J. Cioslowski, P. Piskorz, M. Schimeczek, G. Boche, J. Am.
Chem. Soc. 1998, 120, 2612; b) K. B. Wiberg, S. Sklenak, W. F.
Baiky, J. Org. Chem. 2000, 65, 2014; c) B. Jedlicka, R. H.
Crabtree, P. E. M. Siegbahn, Organometallics 1997, 16, 6021;
d) G. Boche, M. Schimeczek, J. Cioslowski, P. Piskorz, Eur. J.
Org. Chem. 1998, 1851.
[
[
[
[
7] A titration of the supernatant solution indicated that the base
equivalents remain in solution (> 95%).
8] J. Tammiku-Taul, P. Burk, A. Tuulmets, J. Phys. Chem. A 2004,
108, 133.
9] a) A. D. Pajerski, J. E. Chubb, R. M. Fabicon, H. G. Richey, Jr.,
J. Org. Chem. 2000, 65, 2231; b) S. Chadwick, U. Englich, K.
Ruhland-Senge, Inorg. Chem. 1999, 38, 6289.
[
10] Solutions of tBuMgCl·LiCl (1m in THF) and tBu Mg·LiCl (1m in
2
THF) were also prepared and applied in Br/Mg-exchange
reactions with 3. However, these tert-butylmagnesiates featured
slightly lower reaction rates than the secondary reagents 1 and
14. For full conversion of the aryl bromides into the Grignard
reagents, 1.1 equiv of both types of reagents was enough,
therefore indicating that no elimination of HBr from the
tBuBr byproduct by magnesiates takes place. Further work on
magnesiates with different alkyl groups is in progress in our
laboratories.
1
62
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 159 –162