Page 5 of 7
Journal of the American Chemical Society
Shigeno, M.; Yamaguchi, M.; Akutagawa, T. Ferroelectric alkylamide-
EXPERIMENTAL SECTION
substituted helicene derivative with two-dimensional hydrogen-
bonding lamellar phase. J. Am. Chem. Soc. 2019, 141, 2391; (c)
Miyajima, D.; Araoka, F.; Takezoe, H.; Kim, J.; Kato, K.; Takata, M.;
Aida, T. Ferroelectric columnar liquid crystal featuring confined
polar groups within core–shell architecture. Science 2012, 336, 209;
(d) Liu, Y.; Aziguli, H.; Zhang, B.; Xu, W.; Lu, W.; Bernholc, J.; Wang,
Q. Ferroelectric polymers exhibiting behaviour reminiscent of a
morphotropic phase boundary. Nature 2018, 562, 96; (e) Nagarajan,
V.; Roytburd, A.; Stanishevsky, A.; Prasertchoung, S.; Zhao, T.; Chen,
L.; Melngailis, J.; Auciello, O.; Ramesh, R. Dynamics of ferroelastic
domains in ferroelectric thin films. Nat. Mater. 2003, 2, 43.
(3) (a) Harada, J.; Shimojo, T.; Oyamaguchi, H.; Hasegawa, H.;
Takahashi, Y.; Satomi, K.; Suzuki, Y.; Kawamata, J.; Inabe, T.
Directionally tunable and mechanically deformable ferroelectric
crystals from rotating polar globular ionic molecules. Nat. Chem.
2016, 8, 946; (b) Wang, S.; Liu, X.; Li, L.; Ji, C.; Sun, Z.; Wu, Z.; Hong,
M.; Luo, J. An unprecedented biaxial trilayered hybrid perovskite
ferroelectric with directionally tunable photovoltaic effects. J. Am.
Chem. Soc. 2019, 141, 7693; (c) Li, L.; Liu, X.; Li, Y.; Xu, Z.; Wu, Z.;
Han, S.; Tao, K.; Hong, M.; Luo, J.; Sun, Z. Two-dimensional hybrid
perovskite-type ferroelectric for highly polarization-sensitive
shortwave photodetection. J. Am. Chem. Soc. 2019, 141, 2623; (d) Xu,
W.-J.; Li, P.-F.; Tang, Y.-Y.; Zhang, W.-X.; Xiong, R.-G.; Chen, X.-M.
A molecular perovskite with switchable coordination bonds for high-
temperature multiaxial ferroelectrics. J. Am. Chem. Soc. 2017, 139,
6369; (e) Tang, Y.-Y.; Li, P.-F.; Liao, W.-Q.; Shi, P.-P.; You, Y.-M.;
Xiong, R.-G. Multiaxial molecular ferroelectric thin films bring light
to practical applications. J. Am. Chem. Soc. 2018, 140, 8051; (f) Tang,
Y.-Y.; Ai, Y.; Liao, W.-Q.; Li, P.-F.; Wang, Z.-X.; Xiong, R.-G. H/F-
substitution-induced homochirality for designing high-Tc molecular
perovskite ferroelectrics. Adv. Mater. 2019, 31, 1902163; (g) Zhang, Z.;
Li, P.-F.; Tang, Y.-Y.; Wilson, A. J.; Willets, K.; Wuttig, M.; Xiong, R.-
G.; Ren, S. Tunable electroresistance and electro-optic effects of
transparent molecular ferroelectrics. Sci. Adv. 2017, 3, e1701008; (h) Li,
D.; Zhao, X.-M.; Zhao, H.-X.; Dong, X.-W.; Long, L.-S.; Zheng, L.-S.
Construction of magnetoelectric composites with a large room-
temperature magnetoelectric response through molecular–ionic
ferroelectrics. Adv. Mater. 2018, 30, 1803716.
1
2
3
4
5
6
7
8
Synthesis. 1,5-Diazabicyclo[3.2.1]octane was synthesized
according to the reported literature by reactions of homopi-
perazine with formaldehyde aqueous solution in tolu-
ene/H2O systems.13 The title compound [3.2.1-dabco]BF4 was
obtained through slow evaporation of a solution of metha-
nol/H2O (1:1) containing 1,5-diazabicyclo[3.2.1]octane (1.12 g,
10 mmol), and tetrafluoroboric acid (40% in water, 10 mmol)
at 323 K. The white sheet crystals were formed in six hours.
Powder X-ray diffraction (PXRD) (Figure S2) and infrared (IR)
spectroscopy (Figure S5) results confirmed the phase purity
of the bulk crystals.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Measurements. The methods of single-crystal X-ray dif-
fraction, DSC, dielectric, SHG, P−E hysteresis loop, PFM,
PXRD, and IR experiments were described in detail previous-
ly.14 The thin film sample with thickness of ∼3 μm of [3.2.1-
dabco]BF4 was used for the P−E hysteresis loop and PFM
measurements. The precursor solution was prepared by dis-
solving 20 mg [3.2.1-dabco]BF4 in 1 mL methanol. Spreading
20 µL of the precursor solution on a clean indium-doped tin
oxide (ITO) glass substrate. The high-quality thin film crys-
tals were formed after the slow solvent evaporation at 300 K.
For the P−E hysteresis loop measurement, we dropped the
liquid GaIn eutectic on the thin film sample as the top elec-
trode to form an ITO/[3.2.1-dabco]BF4 thin film/GaIn capaci-
tor architecture.
ASSOCIATED CONTENT
Supporting Information.
Figures S1–S5, Tables S1–S3, and discussion. This material is
The structures have been deposited at the Cambridge Crys-
tallographic Data Centre (deposition numbers: CCDC
1945432-1945434), and can be obtained free of charge from
(4) (a) Ye, H.-Y.; Tang, Y.-Y.; Li, P.-F.; Liao, W.-Q.; Gao, J.-X.; Hua,
X.-N.; Cai, H.; Shi, P.-P.; You, Y.-M.; Xiong, R.-G. Metal-free three-
dimensional perovskite ferroelectrics. Science 2018, 361, 151; (b) Fu, D.
W.; Cai, H. L.; Liu, Y.; Ye, Q.; Zhang, W.; Zhang, Y.; Chen, X. Y.;
Giovannetti, G.; Capone, M.; Li, J.; Xiong, R. G.
Diisopropylammonium bromide is a high-temperature molecular
ferroelectric crystal. Science 2013, 339, 425; (c) Tang, Y.-Y.; Li, P.-F.;
Zhang, W.-Y.; Ye, H.-Y.; You, Y.-M.; Xiong, R.-G. A multiaxial
molecular ferroelectric with highest curie temperature and fastest
polarization switching. J. Am. Chem. Soc. 2017, 139, 13903; (d) Shi, P.-
P.; Tang, Y.-Y.; Li, P.-F.; Ye, H.-Y.; Xiong, R.-G. De novo discovery of
[Hdabco]BF4 molecular ferroelectric thin film for nonvolatile low-
voltage memories. J. Am. Chem. Soc. 2017, 139, 1319.
AUTHOR INFORMATION
Corresponding Author
*caihu@ncu.edu.cn; xiongrg@seu.edu.cn
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
(5) Zhang, H.-Y.; Tang, Y.-Y.; Shi, P.-P.; Xiong, R.-G. Toward the
targeted design of molecular ferroelectrics: modifying molecular
symmetries and homochirality. Acc. Chem. Res. 2019, 52, 1928.
(6) Katrusiak, A.; Szafrański, M. Ferroelectricity in NH⋯ N
hydrogen bonded crystals. Phys. Rev. Lett. 1999, 82, 576.
(7) Szafrański, M.; Katrusiak, A.; McIntyre, G. Ferroelectric order
of parallel bistable hydrogen bonds. Phys. Rev. Lett. 2002, 89, 215507.
(8) Yang, C. K.; Chen, W. N.; Ding, Y. T.; Wang, J.; Rao, Y.; Liao, W.
Q.; Xie, Y.; Zou, W.; Xiong, R. G. Directional intermolecular
interactions for precise molecular design of a high-Tc multiaxial
molecular ferroelectric. J. Am. Chem. Soc. 2019, 141, 1781.
(9) Li, B.; Kawakita, Y.; Ohira-Kawamura, S.; Sugahara, T.; Wang,
H.; Wang, J.; Chen, Y.; Kawaguchi, S. I.; Kawaguchi, S.; Ohara, K.; Li,
K.; Yu, D.; Mole, R.; Hattori, T.; Kikuchi, T.; Yano, S.-i.; Zhang, Z.;
Zhang, Z.; Ren, W.; Lin, S.; Sakata, O.; Nakajima, K.; Zhang, Z.
Colossal barocaloric effects in plastic crystals. Nature 2019, 567, 506.
(10) Li, P.-F.; Liao, W.-Q.; Tang, Y.-Y.; Qiao, W.; Zhao, D.; Ai, Y.;
Yao, Y.-F.; Xiong, R.-G. Organic enantiomeric high-Tc ferroelectrics.
Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 5878.
This work was supported by the National Natural Science
Foundation of China (21991142, 21831004, 21975114, 11904151,
21571094, 21661021 and 21865015).
REFERENCES
(1) (a) Scott, J. Applications of modern ferroelectrics. Science 2007,
315, 954; (b) Lines, M. E.; Glass, A. M. Principles and applications of
ferroelectrics and related materials; Clarendon Press: Oxford, UK,
1977; (c) Li, W.; Wang, Z.; Deschler, F.; Gao, S.; Friend, R. H.;
Cheetham, A. K. Chemically diverse and multifunctional hybrid
organic–inorganic perovskites. Nat. Rev. Mater. 2017, 2, 16099; (d)
Dragan, D. Ferroelectric, dielectric and piezoelectric properties of
ferroelectric thin films and ceramics. Rep. Prog. Phys. 1998, 61, 1267.
(2) (a) Li, F.; Cabral, M. J.; Xu, B.; Cheng, Z.; Dickey, E. C.; LeBeau,
J. M.; Wang, J.; Luo, J.; Taylor, S.; Hackenberger, W.; Bellaiche, L.; Xu,
Z.; Chen, L.-Q.; Shrout, T. R.; Zhang, S. Giant piezoelectricity of Sm-
doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Science 2019, 364, 264;
(b) Anetai, H.; Takeda, T.; Hoshino, N.; Kobayashi, H.; Saito, N.;
ACS Paragon Plus Environment