fluorescence quenching mechanism.4 By now, only a few
fluorescence “turn on” chemosensors for Ag+ and Hg2+ have
been described.4a,5 Herein, we report fluorescence “turn on”
chemosensors for Ag+ and Hg2+ by making use of the unique
aggregation-induced emission (AIE) feature of tetraphenyl-
ethylene motif and the selective binding abilities of adenine
(with Ag+) and thymine (with Hg2+).6
TPE compounds 1 and 2 (Scheme 2), aggregation would
occur in the presence of Ag+ and Hg2+, respectively, leading
to fluorescence enhancement. Therefore, it is anticipated that
Scheme 2. Synthetic Approach for Compounds 1 and 2
The design rationale for these Ag+ and Hg2+ chemosensors
is schematically illustrated in Scheme 1 and explained as
Scheme 1
.
Design Rationale for the Ag+ and Hg2+
Chemosensors
selective fluorescence “turn on” chemosensors for Ag+ and
Hg2+ can be established with TPE compounds 1 and 2,
respectively. The intramolecular coordination may also occur
within 1 or 2 (see Scheme 1), and accordingly, the intramo-
lecular rotations would be also restricted, leading to fluo-
rescence enhancement.
In this paper, we will describe the synthesis and spectral
variation of 1 and 2 after addition of Ag+ and Hg2+. The
results show that the fluorescence intensities of 1 and 2 are
remarkably enhanced after introducing Ag+ and Hg2+; thus,
compounds 1 and 2 can function as fluorescence “turn on”
chemosensors for Ag+ and Hg2+.
The synthesis of compounds 1 and 2 started from 4,4′-
dihydroxybenzophenone which was converted to dibromo 3
by reaction with 1,3-dibromopropane. Compound 4 was
yielded through a McMurry reaction between compound 3
and diphenyl ketone. Further reactions of dibromotetraphe-
nylethylene 4 with adenine and thymine in the presence of
K2CO3 led to compounds 1 and 2, respectively, in acceptable
yields. The chemical structures of these new compounds were
established by spectroscopic and elemental analysis data.
Figure 1 shows the fluorescence spectrum of compound 1
and those in the presence of different amounts of AgClO4
in H2O/THF (5:1, v/v). Compound 1 shows rather weak
emission at this concentration (see Figure S1-1 of the
Supporting Information). However, after addition of AgClO4,
the emission band at 470 nm emerged and its intensity
increased gradually as displayed in Figure 1. Actually, the
fluorescence difference for the solution of 1 before and after
addition of Ag+ can be distinguished by the naked eye as
displayed in the inset of Figure 1. Moreover, the fluorescence
intensity of 1 at 470 nm increases linearly with the
follows: (1) tetraphenylethylene (TPE) derivatives show weak
fluorescence in solution, but they become strong emission
after aggregation. In fact, new detection methods based on
this AIE feature of TPE for protein and DNA have been
described recently;7 for example, a quaternized tetraphenyl-
ethylene salt has been successfully used as a fluorescent
probe for G-quadruplex formation and real-time monitoring
of DNA folding;7d (2) it is known that adenine and thymine
can selectively bind with Ag+ and Hg2+, respectively.6 For
(4) See, for examples: (a) Nolan, E. M.; Lippard, S. J Chem. ReV. 2008,
108, 3443–3480, and references therein. (b) Kim, J. S.; Choi, M. G.; Song,
K. C.; No, K. T.; Ahn, S.; Chang, S. -K Org. Lett. 2007, 9, 1129–1132.
(c) Che, Y. K.; Yang, X. M.; Zang, L. Chem. Commun. 2008, 1413–1415.
(d) Descalzo, A. B.; Martı´nez-Martı´n˜ez, R.; Radeglia, R.; Rurack, K.;
Soto, J. J. Am. Chem. Soc. 2003, 125, 3418–3419. (e) Tong, H.; Wang,
L. X.; Jing, X. B.; Wang, F. S. Macromolecules 2002, 35, 7169–7177.
(5) (a) Yamamoto, Y.; Taki, M.; Iyoshi, S. Inorg. Chem. 2008, 47, 3946–
3948. (b) Coskun, A.; Akkaya, E. U. J. Am. Chem. Soc. 2005, 127, 10464–
10465. (c) Nolan, E. M.; Lippard, S. J. J. Am. Chem. Soc. 2007, 129, 5910–
5918. (d) Liu, B.; Tian, H. Chem. Commun. 2005, 315, 6–3158. (e) Zhang,
H.; Han, L. F.; Zachariasse, K.; Jiang, Y. B. Org. Lett. 2005, 7 (19), 4217–
4220. (f) Coskun, A.; Akkaya, E. U. J. Am. Chem. Soc. 2006, 128, 14474–
14475. (g) Shiraishi, Y.; Maehara, H.; Ishizumi, K.; Hirai, T. Org. Lett.
2007, 9 (16), 3125–3128. (h) Lu, Z. J.; Wang, P. N.; Zhang, Y.; Chen,
J. Y.; Zhen, S.; Leng, B.; Tian, H. Anal. Chim. Acta 2007, 597, 306–312.
(i) Zhang, H.; Wang, Q. L.; Jiang, Y. B. Tetrahedron. Lett. 2007, 48, 3959–
3962. (j) Wang, J. B.; Qian, X. H. Chem. Commun. 2006, 109–111. (k)
Guo, X. F.; Qian, X. H.; Jia, L. H. J. Am. Chem. Soc. 2004, 126, 2272–
2273. (l) Yang, R. H.; Chan, W. H.; Lee, A. W. M.; Xia, P. F.; Zhang,
H. K.; Li, K. A. J. Am. Chem. Soc. 2003, 125, 2884–2885. (m) Rurack, K.;
Kollmannsberger, M.; Resch-Genger, U.; Daub, J. J. Am. Chem. Soc. 2000,
122, 968–969
.
(6) Selective binding of Ag+: (a) Liu, L.; Zhang, D.; Zhang, G.; Xiang,
J.; Zhu, D Org. Lett. 2008, 10, 2271–2274. (b) Purohit, C. S.; Verma, S.
J. Am. Chem. Soc. 2007, 129, 3488–3489. (c) Purohit, C. S.; Mishra, A. K.;
Verma, S. Inorg. Chem. 2007, 46, 8493–8495. (d) Purohit, C. S.; Verma,
S J. Am. Chem. Soc. 2006, 128, 400–401. Selective binding of Hg2+: (e)
Liu, C. W.; Hsieh, Y. T.; Huang, C. C.; Lin, Z. H.; Chang, H. T. Chem.
Commun. 2008, 2242–2244. (f) Chiang, C. K.; Huang, C. C.; Liu, C. W.;
Chang, H. T. Anal. Chem. 2008, 80, 3716–3721. (g) Wang, Z.; Zhang, D. Q.;
Zhu, D. B. Anal. Chim. Acta 2005, 549, 10–13. (h) Lee, J.-S.; Han, M. S.;
Mirkin, C. A. Angew. Chem., Int. Ed. 2007, 46, 4093–4096. (i) Li, D.;
Wieckowska, A.; Willner, I. Angew. Chem., Int. Ed. 2008, 47, 3927–3931.
(j) Ono, A.; Togashi, H. Angew. Chem., Int. Ed. 2004, 43, 4300–4302.
(7) (a) Tong, H.; Hong, Y. N.; Dong, Y. Q.; Ha¨ussler, M.; Lam, J. W. Y.;
Li, Z.; Guo, Z. F.; Guo, Z. H.; Tang, B. Z. Chem. Commun. 2006, 3705–
3707. (b) Dong, Y. Q.; Lam, J. W. Y.; Qin, A. J.; Liu, J. Z.; Li, Z.; Tang,
B. Z. Appl. Phys. Lett. 2007, 91, 011111. (c) Tong, H.; Hong, Y. N.; Dong,
Y. Q.; Ha¨ussler, M.; Li, Z.; Lam, J. W. Y.; Dong, Y. P.; Sung, H. H.-Y.;
Williams, I. D.; Tang, B. Z. J. Phys. Chem. B 2007, 111, 11817–11823.
(d) Hong, Y.; Ha¨ussler, M.; Lam, J. W. Y.; Li, Z.; Sin, K.; Dong, Y.; Tong,
H.; Liu, J.; Qin, A.; Renneberg, R.; Tang, B. Z. Chem.sEur. J. 2008, 14,
6428–6437.
4582
Org. Lett., Vol. 10, No. 20, 2008