Table 2 Suzuki–Miyaura coupling reaction of 4-chlorotoluene at
different catalyst (1) loadinga
0.005 mol% at room temperature. The catalyst remained active
for 10 successive catalytic runs without any loss of its activity which
is in line with the DFT calculation describing the Pd–carbene
bond as a strong one preventing from any palladium leaching
in solution.
Entry
Catalyst (mol%)
Time/h
Yieldb (%)
TON
272
692
1371
9500
1
2
3
4
5
0.36
0.14
0.07
0.01
0.005
4
4
5
6
26
98
97
96
95
65
Financial support from the Department of Science and
Technology (DST), India (Grant No. SR/FT/CS-020/2008),
is highly acknowledged. SCS is thankful to UGC, SS and TKS
are thankful to CSIR for their research fellowships. SKM and
DK thank Prof. S. Dattagupta for support and constant
encouragement.
13 000
a
Reaction conditions: catalyst 1, 4-chlorotoluene (1 mmol), phenyl-
boronic acid (1.5 mmol), NaOMe (2 mmol), 5 mL dry 1,4-dioxane.
b
Isolated yield after column chromatography.
References
structure of 1 as well as dissociated monomer 1m (see ESIw) were
generated. An earlier study has considered dissociation of the
palladium dimer to monomers in solution.12 To understand the
nature of the PdꢀC(carbene) bond and compare its strength with
the PdꢀC(aryl) bond we have performed Natural Bond Orbital
Analysis. The Wiberg bond indices for the PdꢀC(carbene)
(0.5215) are relatively higher than PdꢀC(aryl) (0.3891)
suggesting a stronger PdꢀC(carbene) bond. This fact is also
manifested in the X-ray structure revealing a shorter bond
length of PdꢀC(carbene) in comparison with the PdꢀC(aryl)
bond length. The bonding analysis suggests that both the
Pd–C(carbene) and Pd–C(aryl) are single bonds with occupancy
of 1.289 and 1.525 e, respectively. The electron density contribution
from the Pd itself is very less (14% in PdꢀC(carbene) and 9%
in PdꢀC(aryl) as can be visualized from the two NBO orbitals)
(Fig. 2). To further reinforce our results we have performed
AIM (Atoms in Molecules) calculations for 1m. The electron density
(r) at the bond critical point (BCP) for the PdꢀC(carbene) and
1 (a) A. J. Arduengo, R. L. Harlow and M. Kline, J. Am. Chem.
Soc., 1991, 113, 361–363; (b) A. J. Arduengo, H. V. R. Dias,
R. L. Harlow and M. Kline, J. Am. Chem. Soc., 1992, 114,
5530–5534.
2 For example see: (a) D. Enders, O. Niemeier and A. Henseler,
´ ´
Chem. Rev., 2007, 107, 5606–5655; (b) S. Dıez-Gonzalez and
S. P. Nolan, Synlett, 2007, 2158–2167; (c) T. K. Sen, S. C. Sau,
A. Mukherjee, A. Modak, S. K. Mandal and D. Koley, Chem.
Commun., 2011, 47, 11972–11974.
3 S. Grundemann, A. Kovacevic, M. Albrecht, J. W. Faller and
¨
R. H. Crabtree, Chem. Commun., 2001, 2274–2275.
4 (a) M. Albrecht, Chem. Commun., 2008, 3601–3610; (b) O. Schuster,
L. Yang, H. G. Raubenheimer and M. Albrecht, Chem. Rev., 2009,
109, 3445–3478.
5 (a) M. Heckenroth, A. Neels, M. G. Garnier, P. Aebi, A. W. Ehlers
and M. Albrecht, Chem.–Eur. J., 2009, 15, 9375–9386; (b) G. Ung
and G. Bertrand, Chem.–Eur. J., 2011, 17, 8269–8272.
6 E. Aldeco-Perez, A. J. Rosenthal, B. Donnadieu, P. Parameswaran,
G. Frenking and G. Bertrand, Science, 2009, 326, 556–559.
7 (a) M. Heckenroth, E. Kluser, A. Neels and M. Albrecht, Angew.
Chem., 2007, 119, 6409–6412 (Angew. Chem., Int. Ed., 2007, 46,
6293–6296); (b) A. Prades, M. Viciano, M. Sanau
Organometallics, 2008, 27, 4254–4259.
8 H. Lebel, M. K. Janes, A. B. Charette and S. P. Nolan, J. Am.
Chem. Soc., 2004, 126, 5046–5047.
´ and E. Peris,
2
PdꢀC(aryl) bonds are 0.1898 and 0.1846, respectively, with a r r
value of ꢀ0.216 and ꢀ0.218 (see Computational Details, ESIw).
The values suggest that concentration of electron density along the
bond path is discernable.
9 (a) D. W. Old, J. P. Wolfe and S. L. Buchwald, J. Am. Chem. Soc.,
1998, 120, 9722–9723; (b) A. F. Littke and G. C. Fu, Angew.
Chem., 1998, 110, 3586–3587 (Angew. Chem., Int. Ed., 1998, 37,
3387–3388).
10 (a) B. Yuan, Y. Pan, Y. Li, B. Yin and H. Jiang, Angew. Chem.,
2010, 122, 4148–4152 (Angew. Chem., Int. Ed., 2010, 49,
4054–4058); (b) N. Marion, O. Navarro, J. Mei, E. D. Stevens,
N. M. Scott and S. P. Nolan, J. Am. Chem. Soc., 2006, 128,
4101–4111; (c) L. Wu, J. Ling and Z.-Q. Wuc, Adv. Synth. Catal.,
2011, 353, 1452–1456; (d) R. B. Bedford, C. P. Buttsa, T. E. Hurst
In summary, we prepared two halobridged palladium dimers
bearing the abnormal N-heterocyclic carbene and completely
characterized them. These palladium dimers are active catalysts
for Suzuki–Miyaura cross coupling of a number of aryl chlorides
at room temperature leading to nearly quantitative yield. The
catalyst exhibits its activity at very low catalyst loading up to
and P. Lidstrom, Adv. Synth. Catal., 2004, 346, 1627–1630;
¨
(e) B. Karimi and P. F. Akhavan, Inorg. Chem., 2011, 50,
6063–6072.
11 (a) R. B. Bedford, C. S. J. Cazin and D. Holder, Coord. Chem.
Rev., 2004, 248, 2283–2321; (b) C. J. O’Brien, E. A. B. Kantchev,
C. Valente, N. Hadei, G. A. Chass, A. Lough, A. C. Hopkinson
and M. G. Organ, Chem.–Eur. J., 2006, 12, 4743–4748;
(c) O. Navarro, N. Marion, J. Mei and S. P. Nolan, Chem.–Eur.
J., 2006, 12, 5142–5148; (d) O. Diebolt, P. Braunstein, S. P. Nolan
and C. S. J. Cazin, Chem. Commun., 2008, 3190–3192.
¨
12 W. A. Herrmann, C. Brossmer, K. Ofele, C.-P. Reisinger,
T. Priermeier, M. Beller and H. Fischer, Angew. Chem., 1995,
107, 1989–1992 (Angew. Chem., Int. Ed., 1995, 34, 1844–1848).
13 (a) S. Santra, P. Ranjan, S. K. Mandal and P. K. Ghorai, Inorg.
Chim. Acta, 2011, 372, 47–52; (b) S. Santra, K. Dhara, P. Ranjan,
J. Dash, S. K. Mandal and P. Bera, Green Chem., 2011, 13,
3238–3247.
Fig. 2 Natural bond orbitals of 1m showing (a) PdꢀC(carbene) and
(b) Pd–C(aryl). Hydrogen atoms are omitted for the sake of clarity.
Color code: C grey, Cl green, N blue and Pd pink.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 555–557 557