Article
Chem. Mater., Vol. 22, No. 17, 2010 4891
Scheme 1. Synthetic Route for the Monomer
benzo[2,1-b:3,4-b0]dithiophene,14 benzo[1,2-b:4,5-b0]dithio-
phene,15 indeno[1,2b]fluorene,16 ladder-type oligo-p-phenyl-
ene,17 and germafluorene.18 When these materials were
applied to PSCs, PCEs in the range of 0.41-6.1% were
achieved. Because PSC performance strongly depends on
the choice of the donor segment, the development of novel
and versatile building blocks such as DTBT and systematic
investigation of D-A type polymers are important areas
of research in the search for photovoltaic polymers with
superior properties.
copolymer of DTQx and fluorene, which has been re-
ported to give high photovoltaic performance,19f,g was
also synthesized for comparison. The structural simila-
rity of DTQx to DTBT provides similar versatility as a
building block for use in the coupling polymerization
reactions. The effects of the different donor segments on
the absorption spectra, energy levels and the photovoltaic
performance of the resulting DTQx-containing D-A
copolymers were investigated in detail.
Results and Discussion
Quinoxaline-based polymers have shown interesting
optoelectronic properties and considerable promise for
the design of D-A type photovoltaic polymers.19 In this
study, we investigate the combination of the 5,8-dithien-
2-yl-2,3-diphenylquinoxaline (DTQx) acceptor segment
with three well-known donor segments, namely, carba-
zole, indolo[3,2-b]carbazole, and dithieno[3,2-b:20,30-d]-
pyrrole. These three donor segments contain nitrogen
atoms, which have strong electron-donating ability. The
Material Synthesis. The monomer 3, 5,8-di(2-bromo-
thien-5-yl)-2,3-diphenylquinoxaline, was synthesized ac-
cording to a modified literature procedure,19a as shown in
Scheme 1. The synthetic routes for preparing the four
DTQ-based polymers are shown in Scheme 2. Three types
of DTQx-based copolymers, PF-DTQx, PC-DTQx, and
PIC-DTQx, were synthesized by the Suzuki coupling
reaction between 3 and the corresponding boronic esters
of the donor segments. PDTP-DTQx was synthesized by
the Stille coupling reaction between 3 and the bisstannyl
derivative of dithieno[3,2-b:20,30-d]pyrrole. For the syn-
thesis of PF-DTQx and PC-DTQx, the feed molar ratios
of the donor and the acceptor monomers was set to 100:95
to avoid the formation of a large insoluble fraction of the
polymers. As a result, all the polymers have good solubi-
lity in chloroform (CF), chlorobenzene (CB), and 1,2-
dichlorobenzene (DCB), and their number-average mo-
lecular weights (Mn) and the polydispersity indices were
in the range of 8.1-21.1 K and 1.4-1.9, respectively.
Optical and Electrochemical Properties. The normalized
UV-vis absorption spectra of the four copolymers in CHCl3
solutions are shown in Figure 1. The peak at the longer
wavelength can be attributed to intramolecular charge-trans-
fer (ICT) transitions. PF-DTQx, PC-DTQx, and PIC-DTQx
show similar absorption spectra with absorption maxima at
524, 517, and 514 nm, respectively. The slight blue shift for
PC-DTQx and PIC-DTQx, compared with PF-DTQx, is
likely because of the larger steric hindrance of the side chains
in these two polymers. In contrast, the absorption band of
PDTP-DTQx (617 nm) is at a considerably longer wave-
length compared with the absorptions bands of the other two
copolymers. This change in the absorption is similar to the
cases of DTBT-based copolymers; PF-DTBT, PC-DTBT
and PIC-DTBT have absorption maxima at 537, 545, and
531 nm, respectively,20 but the absorption peak of PDTP-
DTBT extends to 671 nm.12
ꢀ
€
(10) Moule, A. J.; Tsami, A.; Bunnagel, T. W.; Forster, M.; Kronenberg,
N. M.; Scharber, M.; Koppe, M.; Morana, M.; Brabec, C. J.;
Meerholz, K.; Scherf, U. Chem. Mater. 2008, 20, 4045.
(11) (a) Liao, L.; Dai, L. M.; Smith, A.; Durstock, M.; Lu, J. P.; Ding,
J. F.; Tao, Y. Macromolecules 2007, 40, 9406. (b) Huo, L. J.; Chen,
H.-Y.; Hou, J. H.; Chen, T. L.; Yang, Y. Chem. Commun. 2009,
5570.
(12) Zhou, E. J.; Nakamura, M.; Nishizawa, T.; Zhang, Y.; Wei, Q. S.;
Tajima, K.; Yang, C. H.; Hashimoto, K. Macromolecules 2008, 41,
8302.
(13) Zhou, E. J.; Yamakawa, S.; Tajima, K.; Yang, C. H.; Hashimoto,
K. J. Mater. Chem. 2009, 19, 7730.
(14) Zhou, H. X.; Yang, L. Q.; Xiao, S. Q.; Liu, S. B.; You, W.
Macromolecules 2010, 43, 811.
(15) Huo, L. J.; Hou, J. H.; Zhang, S. Q.; Chen, H.-Y.; Yang, Y. Angew.
Chem., Int. Ed. 2010, 49, 1500.
(16) Kim, J. K.; Kim, S. H.; Jung, I. H.; Jeong, E.; Xia, Y. J.; Cho, S.;
Hwang, I.-W.; Lee, K.; Suh, H.; Shim, H.-K.; Woo, H. Y. J. Mater.
Chem. 2010, 20, 1577.
(17) Zheng, Q. D.; Jung, B. J.; Sun, J.; Katz, H. E. J. Am. Chem. Soc.
2010, 132, 5394.
(18) Allard, N.; Aıch, R. B.; Gendrom, D.; Boudreault, P. T.; Tessier,
¨
C.; Alem, S.; Tse, S.-C.; Tao, Y.; Leclerc, M. Macromolecules 2010,
43, 2328.
(19) (a) Gadisa, A.; Mammo, W.; Andersson, L. M.; Admassie, S.;
€
Zhang, F. L.; Andersson, M. R.; Inganas, O. Adv. Funct. Mater.
2007, 17, 3836. (b) Huo, L. J.; Tan, Z. A.; Wang, X.; Zhou, Y.; Han,
M. F.; Li, Y. F. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 4038.
(c) Blouin, N.; Michaud, A.; Gendron, D.; Wakim, S.; Blair, E.;
^
Neagu-Plesu, R.; Belletete, M.; Durocher, G.; Tao, Y.; Leclerc, M.
€
J. Am. Chem. Soc. 2008, 130, 732. (d) Gunes, S.; Baran, D.;
€
€
Gunbas, G.; ozyurt, F.; Fuchsbauer, A.; Sariciftci, N. S.; Toppare,
L. Sol. Energy Mater. Sol. Cells 2008, 92, 1162. (e) Yu, C.-Y.; Chen,
C.-P.; Chan, G.-H.; Hwang, G.-W.; Ting, C. Chem. Mater. 2009,
21, 3262. (f) Lindgren, L. J.; Zhang, F. L.; Andersson, M.; Barrau, S.;
€
€
Hellstrom, S.; Mammo, W.; Perzon, E.; Inganas, O.; Andersson,
M. R. Chem. Mater. 2009, 21, 3491. (g) Kitazawa, D.; Watamabe, N.;
Yamamoto, S.; Tsukamoto, J. Appl. Phys. Lett. 2009, 95, 053701.
(h) Lee, J.-Y.; Shin, W.-S.; Haw, J.-R.; Moon, D.-K. J. Mater. Chem.
2009, 19, 4938. (i) Peng, Q.; Xu, J.; Zhang, W. X. J. Polym. Sci.,
€
Part A: Polym. Chem. 2009, 47, 3399. (j) Tsimi, A.; Bunnagel, T. W.;
(20) Zhou, E. J.; Cong, J. Z.; Yamakawa, S.; Wei, Q. S.; Nakamura, M.;
Tajima, K.; Yang, C. H.; Hashimoto, K. Macromolecules 2010, 43,
2873.
Farrell, T.; Scharber, M.; Choulis, S. A.; Brabec, C. J.; Scherf, U.
J. Mater. Chem. 2007, 17, 1353.