D. Kumar et al. / Tetrahedron Letters 47 (2006) 4197–4199
4199
of reaction time and yield of the product. The addition
of PTC converts the solid reaction mixture to a semi-
solid state, thus facilitating the attack of a nucleophile
on the ensuing a-tosyloxyketone substrates. Further,
Kurth, M. J.; O’Brien, M. J. J. Org. Chem. 1985, 50, 3846;
d) Fuju, M.; Nakamura, K.; Mekata, H.; Oka, S.; Ohno,
(
A. Bull. Chem. Soc. Jpn. 1988, 61, 495; (e) Sengupta, S.;
Sarma, D. S.; Mondal, S. Tetrahedron 1998, 54, 9791; (f)
Guo, H.; Zhang, Y. Synth. Commun. 2000, 30, 2564.
. (a) Svatos, A.; Hunkova, Z.; Kren, V.; Hoskovec, M.;
S y¨ aman, D.; Valterova, I.; Vrkoc, J.; Koutek, B. Tetra-
hedron: Asymmetry 1996, 7, 1285; (b) Bertus, P.; Phan-
savath, P.; Ratovelomanana-Vidal, V.; Genet, J.-P.;
Touati, A. R.; Homri, T.; Hassine, B. B. Tetrahedron:
Asymmetry 1999, 10, 1369; (c) Gotor, V.; Rebolledo, F.;
Liz, R. Tetrahedron: Asymmetry 2001, 12, 513.
the enhanced nucleophilicity of the ArSO anion in the
2
7
salt form, ArSO N(t-But) , generated from TBAB and
2
4
ArSO Na may be responsible for the facile reaction.
2
Subsequently, the molar ratio of TBAB was varied and
it was found that the 25 molar percentage is adequate to
complete the reaction rapidly; with lesser amounts of
TBAB, the reaction gets completed but takes longer
time (10–48 h). The scope of this protocol was further
extended for the synthesis of a variety of substituted
b-keto sulfones (Table 1, entries 2–10). It was observed
that all the ketones require almost the same reaction
time, and yields are relatively better in the case of ace-
tophenone and its derivatives.
8
9
. Wolf, W. M. J. Mol. Struct. 1999, 474, 113.
. (a) Trost, B. M.; Curran, D. P. Tetrahedron Lett. 1981, 22,
1
287; (b) Fan, A.-L.; Cao, S.; Zhang, Z. J. Heterocycl.
Chem. 1997, 34, 1657.
1
1
1
0. Kamigata, N.; Udodaira, K.; Shimizu, T. J. Chem. Soc.,
Perkin Trans. 1 1997, 783.
1. Holmquist, C. R.; Roskamp, E. J. Tetrahedron Lett. 1992,
3
3, 1131.
2. (a) Vennstra, G. E.; Zwaneburg, B. Synthesis 1975, 519;
(b) Wildeman, J.; Van Leusen, A. M. Synthesis 1979,
733.
3. Katrizky, A. R.; Abdel-Fattah, A. A. A.; Wang, M. J.
Org. Chem. 2003, 68, 1443.
4. Lai, C.; Xi, C.; Jiang, Y.; Hua, R. Tetrahedron Lett. 2005,
In conclusion, we have developed a rapid, one-pot and
high yielding protocol for the synthesis of b-keto sulf-
ones from readily available ketones via in situ genera-
tion of a-tosyloxyketones, followed by nucleophilic
substitution with sodium arene sulfinates, under sol-
vent-free conditions.
1
1
1
1
4
6, 513.
5. Varma, R. S.; Kumar, D.; Liesen, P. J. J. Chem. Soc.,
Perkin Trans. 1 1998, 4093.
6. (a) Tanaka, K.; Toda, F. Chem. Rev. 2000, 100, 1025; (b)
Varma, R. S. Green Chem. 1999, 43; (c) Varma, R. S. Pure
Appl. Chem. 2001, 73, 193.
Acknowledgments
1
1
7. Varma, R. S.; Naicker, K. P.; Kumar, D. J. Mol. Catal. A:
Chem. 1999, 149, 153.
Financial support from the institute is gratefully
acknowledged.
8. A representative procedure is as follows: A neat mixture of
p-chloroacetophenone (1 mmol) and [hydroxy(tosyl-
oxy)iodo]benzene (1.1 mmol) was ground together for
3 min, using a pestle and mortar at room temperature.
Subsequently, sodium benzene sulfinate (1 mmol) and
TBAB (0.25 mmol) were added, and the grinding process
continued further for 2 min. The semi-solid reaction
mixture was taken into water and extracted with dichlo-
romethane (5 mL). Organic phase was dried over anhy-
drous sodium sulfate, and the solvent was removed under
reduced pressure. The residue was percolated through a
column of silica gel using ethyl acetate/hexane (1:9, v/v) as
References and notes
1
2
. Simpkins, N. S. In Sulfones in Organic Synthesis; Baldwin,
J. E., Ed.; Pergamon Press: Oxford, 1993.
. (a) Ihara, M.; Suzuki, S.; Taniguchi, T.; Tokunaga, Y.;
Fukumoto, K. Tetrahedron 1995, 51, 9873; (b) Bartlett, P.
A., ; Green, F. R., III; Rose, E. H. J. Am. Chem. Soc.
1
978, 100, 4852; (c) Mandai, T.; Yanagi, T.; Araki, K.;
Morisaki, Y.; Kawada, M.; Otera, J. J. Am. Chem. Soc.
984, 106, 3670; (d) Lythgoe, B.; Waterhouse, I. Tetrahe-
1
eluent to afford the pure product 3, yield 91%, mp 130–
1
dron Lett. 1978, 29, 2625.
32 °C; H NMR (300 MHz, CDCl
3
) d 4.70 (2H, s, CH
2
),
C
1
3
3
4
5
. Sengupta, S.; Sarma, D. S.; Mondal, S. Tetrahedron:
Asymmetry 1998, 9, 2311.
7.45–7.71 (5H, m, Ar–H), 7.81–7.94 (4H, m, Ar–H);
NMR (CDCl ) d 186.81, 141.17, 138.56, 134.36, 134.05,
130.74, 129.27, 129.24, 128.54, 63.61. Compound 4, yield
89%, mp 136–38 °C; H NMR (300 MHz, CDCl
(3H, s, CH ), 4.68 (2H, s, CH ), 7.35 (2H, dd, J = 1.8,
3
. Baldwin, J. E.; Adlington, R. M.; Crouch, N. P.; Hill, R.
L.; Laffey, T. G. Tetrahedron Lett. 1995, 36, 7925.
. (a) Marco, J.-L.; Fernandez, I.; Khiar, N.; Fernandez, P.;
Romero, A. J. Org. Chem. 1995, 60, 6678; (b) Marco, J. L.
J. Org. Chem. 1997, 62, 6575.
1
3
) d 2.46
3
2
7.2 Hz, Ar–H), 7.47 (2H, dd, J = 1.8, 6.9 Hz, Ar–H), 7.75
(2H, dd, J = 1.8, 6.6 Hz, Ar–H), 7.91 (2H, dd, J = 1.8,
1
3
6
. (a) Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1964,
3
6.6 Hz, Ar–H); C NMR (CDCl ) d 186.99, 145.54,
8
6, 1639; (b) Trost, B. M.; Arndt, H. C.; Strege, P. E.;
141.10, 135.59, 134.11, 130.78, 129.89, 129.20, 128.55,
Verhoeven, T. R. Tetrahedron Lett. 1976, 27, 3477; (c)
63.77, 21.70.