3
992 Ameen et al.
Asian J. Chem.
and azo anils ligands as given in Table-4. The Tweedy’s
chelation theory and Searl’s idea explain the reason of antibac-
terial activities of metal complexes increase .
REFERENCES
31
1. H. Kumar and R.P. Chaudhary, Scholars Res. Lib., 2, 407 (2010).
O.B. Ibrahim, M.A. Mohamed and M.S. Refat, Can. Chem. Trans., 2,
08 (2014).
2
.
1
TABLE-4
3. R.A. Ahmadi and S. Amani, Molecules, 17, 6434 (2012).
4. P. Bhattacharyya, J. Parr, A.T. Ross and A.M.Z. Slawin, Dalton Trans.,
11, 3149 (1998).
5. H. Nazir, N.S. Akben, M.B. Ates, H. Sözeri, I. Ercan, O. Atakol and F.
Ercan, Z. Kristallogr., 221, 276 (2006).
*
RESULTS OF ANTIBACTERIAL STUDY OF
AZO ANILS, OXALIC ACID, METAL SALT
AND MIXED LIGANDS M(II) COMPLEXES
Gram-positive
B. S.
subtilis aureus aerogenes
+++
+++
+++
+++
+++
Gram-negative
6
7
8
.
.
.
N.N. Das and A.C. Dash, Polyhedron, 14, 1221 (1995).
A. Khandar and K. Nejati, Polyhedron, 19, 607 (2000).
A.A. Khandar, Z. Rezvani and K.I. Nejati, Acta Chim. Slov., 49, 733
(2002).
Compounds
CuCl ·2H O
Zn(CH COO) ·2H O
Oxalic acid
E.
E.
coli
+++
+++
+++
++++
++++
+++
+++
+++
+++
+++
+++
2
2
3
2
2
9. L. Nejati and Z. Rezvani, New J. Chem., 27, 1665 (2003).
1
1
0. A.A. Khandar, K. Nejati and Z. Rezvani, Molecules, 10, 302 (2005).
1. M. Badea, R. Olar, E. Cristurean, D. Marinescu, A. Emandi, P.
Budrugeac and E. Segal, J. Therm. Anal. Calorim., 77, 815 (2004).
2. Y. Geng, D. Gu and F. Gan, Opt. Mater., 27, 193 (2004).
3. H. Kocaokutgen, M. Gur, M. Serkansoylu and P. Lonnecke, Dyes Pig-
ments, 67, 99 (2005).
HNPDBAB
HPIMNDP
+++
+++
++++
+++++
++++
+++++
++++
++++
++++
++++
++++
+++++
++++
+++
[
[
[
[
(HNPDBAB)Cu(II)(OX)] +++++ +++++
(HPIMNDP)Cu(II)(OX)] +++++ +++++
(HNPDBAB)Zn(II)(OX)] +++++ +++++
1
1
(HPIMNDP)Zn(II)(OX)]
Streptomycin
+++++ +++++
++++ ++++
1
1
4. S. Ren, R. Wang, K. Komatsu, P. Bonaz-Krause, Y. Zyrianov, C.E.
McKenna, C. Csipke, Z.A. Tokes and E.J. Lien, J. Med. Chem., 45,
**
*
Antibacterial activity was measured using disc diffusion method: disc
diameter = 6 mm; inhibition zone = 1-5 mm beyond control limit =
++ (less active); inhibition zone = 6-10 mm beyond control limit =
+++ (moderately active); inhibition zone = 11-15 mm beyond control
limit = +++++ (highly active); inhibition zone = 0 (resistant to
bacteria). Streptomycin: standard antibacterial drug.
410 (2002).
5. M.T.H. Tarafder, M.A. Ali, N. Saravanan, W.Y. Weng, S. Kumar, N.
Umar-Tsafe and K.A. Crouse, Transition Met. Chem., 25, 295 (2000).
6. H. Nishihara, Bull. Chem. Soc. Jpn., 77, 407 (2004).
7. P. Román, C. Guzmán-Miralles, A. Luque, J.I. Beitia, J. Cano, F. Lloret,
M. Julve and S. Alvarez, Inorg. Chem., 35, 3741 (1996).
+
+
1
1
*
*
1
1
8. J. Glerup, P.A. Goodson, D.J. Hodgson and K. Michelsen, Inorg. Chem.,
3
4, 6255 (1995).
The results revealed that antibacterial activities of azo anils
become more pronounced when free ligands were coordinated
to central metal atom. The antibacterial activities of these mixed
ligands M(II) complexes {Cu(II)) and Zn(II)} were influenced
due to their structural symmetry. The comparison of antibac-
terial activities can be seen from Table-4. The enrichment in
antibacterial activities may be streamlined on the basis of their
structural features i.e. due to electron withdrawing group (nitro
and –C=N) attached on benzene ring of azo anils.
9. J. Suárez-Varela, J.M. Dominguez-Vera, E. Colacio, J.C. Avila-Rosón,
M.A. Hidalgo and D. Martín-Ramos, J. Chem. Soc., Dalton Trans.,
2
143 (1995).
20. J.J. Girerd, O. Kahn and M. Verdaguer, Inorg. Chem., 19, 274 (1980).
2
2
1. R. Pellaux, H.W. Schmalle, R. Huber, P. Fischer, T. Hauss, B. Ouladdiaf
and S. Decurtins, Inorg. Chem., 36, 2301 (1997).
2. E. Coronado, J.R. Galan-Mascaros, C. Gimenez-Saiz, G. Garcia, C.J.
Ruiz-Perez and S. Triki, Adv. Mater., 8, 737 (1996).
23. Y. Pei, Y. Journaux and O. Kahn, Inorg. Chem., 28, 100 (1989).
2
4. B. Bag, N. Mondal, S. Mitra, V. Gramlich, J. Ribas and M.S. El Fallah,
Polyhedron, 20, 2113 (2001).
5. R. Botros, Azomethine Dyes Derived from an o-Hydroxy Aromatic
Aldehyde and 2-Aminopyridine, US Patent 4051119 (1977).
It has been assumed that azo anils (or Schiff base) with
nitrogen and oxygen system retard enzymatic activities of
bacteria, after coordinating to central metal atom.
2
26. Z. Rezvani, M.A. Ghanea, K. Nejati and S.A. Baghaei, Polyhedron,
8, 2913 (2009).
2
Conclusions
2
2
2
3
3
7. M.B. Ferrari, S. Capacchi, G. Pelosi, G. Reffo, P. Tarasconi, R.Albertini,
S. Pinelli and P. Lunghi, Inorg. Chim. Acta, 286, 134 (1999).
8. Z.H. Chohan and S.K.A. Sherazi, Synth. React. Inorg. Met.-Org. Chem,
Mixed ligands complexes of Cu(II) and Zn(II) were observed
more antibacterial as compared to metal salt, free ligands
HNPDBAB, HPIMNDP and oxalic acid. More inhibition
potential was exhibited by copper(II) and zinc(II) complexes
against Gram-positive (Bacillus subtilis and Staphylococcus
aureus) bacteria as compared to Gram-negative (Enterobacter
aerogenes and Escherichia coli). Metal complexes of Cu(II)
showed higher antibacterial activities as compared to Zn(II)
complexes.
2
9, 105 (1999).
9. C. Jayabalakrishnan and K. Natarajan, Synth. React. Inorg. Met.-Org.
Chem., 31, 983 (2001).
0. T. Jeewoth, H. Li Kam Wah, M.G. Bhowon, D. Ghoorohoo and K.
Babooram, Synth. React. Inorg. Met.-Org. Chem., 30, 1023 (2000).
1. N. Dharmaraj, P. Viswanathamurthi and K. Natarajan, Transition Met.
Chem., 26, 105 (2001).
32. C.H. Colins and P.M. Lyne, Microbial Methods, University Park Press
Baltimore, p. 422 (1970).
3
3
3. B. Jacquelyn, Microbiology, Prentice Hall, pp. 334 (1993).
4. F.I. Abdullah, M.M. Elajaily, R.A. Ockasha, M.S. Suliman and A.A.
Maihub, Int. J. Adv. Pharm. Bio. Chem., 3, 2277 (2014).
5. A.A. Khandar and Z. Rezvani, Polyhedron, 18, 129 (1998).
6. Z. Rezvani, L. Ahar, K. Nejati and S.M. Seyedahmadian, Acta Chim.
Slov., 51, 675 (2004).
ACKNOWLEDGEMENTS
3
3
The authors are thankful to Department of Biochemistry,
Pakistan Council of Scientific & Industrial Research, Lahore
for their cooperation in the measurement of antibacterial
activities of synthesized compounds.
37. E. Erdem, E.Y. Sari, R. Kilinçarslan and N. Kabay, Transition Met.
Chem., 34, 167 (2009).
3
3
8. E. Canpolat and M. Kaya, Russ. J. Coord. Chem., 31, 790 (2005).
9. A.B.P. Lever, Coord. Chem. Rev., 3, 119 (1968).