Journal of the American Chemical Society
Communication
Chem. Soc. Rev. 2009, 38, 3242−3272. (j) Colby, D. A.; Bergman, R.
G.; Ellman, J. A. Chem. Rev. 2010, 110, 624−655. (k) Mkhalid, I. A. I.;
Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev.
Scheme 4. Reaction of 1 with sec-Alcohols 7 and 8
2010, 110, 890−931. (l) Lyons, T. W.; Sanford, M. S. Chem. Rev.
2010, 110, 1147−1169. (m) Ackermann, L. Chem. Commun. 2010, 46,
4866−4877. (n) Newhouse, T.; Baran, P. S. Angew. Chem., Int. Ed.
2011, 50, 3362−3374. (o) McMurray, L.; O’Hara, F.; Gaunt, M. J.
Chem. Soc. Rev. 2011, 40, 1885−1898. (p) Yeung, C. S.; Dong, V. M.
Chem. Rev. 2011, 111, 1215−1292. (q) Sun, C.-L.; Li, B.-J.; Shi, Z.-J.
Chem. Rev. 2011, 111, 1293−1314. (r) Cho, S. H.; Kim, J. Y.; Kwak, J.;
Chang, S. Chem. Soc. Rev. 2011, 40, 5068−5083. (s) Kuhl, N.;
Hopkinson, M. N.; Wencel-Delord, J.; Glorius, F. Angew. Chem., Int.
Ed. 2012, 51, 10236−10254. (t) Yamaguchi, J.; Yamaguchi, A. D.;
Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960−9009. (u) Arockiam,
P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879−5918.
(
2) Reviews on C−C activation: (a) Rybtchinski, B.; Milstein, D.
Angew. Chem., Int. Ed. 1999, 38, 870−883. (b) Murakami, M.; Ito, Y.
Top. Organomet. Chem. 1999, 97−129. (c) Jun, C.-H. Chem. Soc. Rev.
2
2
1
1
3
1
8
2
1
4
004, 33, 610−618. (d) Miura, M.; Satoh, T. Top. Organomet. Chem
005, 14, 1−20. (e) Kondo, T.; Mitsudo, T. Chem. Lett. 2005, 34,
̌
462−1467. (f) Necas, D.; Kotora, M. Curr. Org. Chem. 2007, 11,
graphic analysis of the C−C cleaved product revealed its
distorted square pyramidal structure with the acyl ligand on the
apical position in the solid state. This work demonstrates that
T-shape [PBP]Rh complex 1 possesses a high propensity for
oxidative addition of nonpolar C−C σ-bonds as well as polar
O−H bonds.
566−1591. (g) Tobisu, M.; Chatani, N. Chem. Soc. Rev. 2008, 37,
00−307. (h) Nakao, Y.; Hiyama, T. Pure Appl. Chem. 2008, 80,
097−1107. (i) Yorimitsu, H.; Oshima, K. Bull. Chem. Soc. Jpn. 2009,
2, 778−792. (j) Seiser, T.; Cramer, N. Org. Biomol. Chem. 2009, 7,
835−2840. (k) Bonesi, S. M.; Fagnoni, M. Chem.Eur. J. 2010, 16,
3572−13589. (l) Murakami, M.; Matsuda, T. Chem. Commun. 2011,
7, 1100−1105. (m) Aïssa, C. Synthesis 2011, 3389−3407. (n) Ruh-
ASSOCIATED CONTENT
Supporting Information
■
land, K. Eur. J. Org. Chem. 2012, 2683−2706.
*
S
(3) (a) Hasegawa, M.; Segawa, Y.; Yamashita, M.; Nozaki, K. Angew.
Chem., Int. Ed. 2012, 51, 6956−6960. For related iridium and
platinum complexes, see: (b) Segawa, Y.; Yamashita, M.; Nozaki, K. J.
Am. Chem. Soc. 2009, 131, 9201−9203. (c) Segawa, Y.; Yamashita, M.;
Nozaki, K. Organometallics 2009, 28, 6234−6242. (d) Ogawa, H.;
Yamashita, M. Dalton Trans. 2013, 42, 625−629.
Detailed experimental procedures, physical and spectroscopic
data, crystallographic data, and theoretical study for all new
(
4) Ref 3b showed that the boryl ligand in PBP pincer could be
considered as σ-donor according to the long Ir−Cl bond length in
PBP]Ir(H)(CO)(Cl), where Cl located at trans to boryl ligand, while
AUTHOR INFORMATION
[
−1
CO stretch of [PBP]Rh-CO (3) in ref 3a was 1933 cm , similar to
−1
that of benzene-based PCP system (1925 cm , see: Moulton, C. J.;
Shaw, B. L. J. Chem. Soc., Dalton 1976, 1020−1024. ). However, it was
difficult to estimate the difference in donor ability of X ligand in PXP
system (X = B, C) from CO stretch, because the Rh−C bond lengths
in these system were different [3, 1.908(3) Å; PCP, 1.848(16) Å]. It
may lead to difference in orbital overlapping between d-orbital of Rh
and π*-orbital of CO ligand. That is, it may cancel the lower
wavenumber shift come from electron richness at Rh center by strong
σ-donor ability of boryl ligand.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by Funding Program for Next
Generation World-Leading Researchers, Green Innovation,
from JSPS (K.N.), Grants-in-Aid for Scientific Research on
Innovative Areas “Molecular Activation Directed toward
Straightforward Synthesis” [22105005 (M.M.); 23105510
(5) (a) Murakami, M.; Amii, H.; Ito, Y. Nature 1994, 370, 540−541.
(b) Murakami, M.; Amii, H.; Shigeto, K.; Ito, Y. J. Am. Chem. Soc.
1
996, 118, 8285−8290. (c) Matsuda, T.; Shigeno, M.; Murakami, M.
Chem. Lett. 2006, 35, 288−289.
6) Decarbonylation of other ketones: (a) Rusina, A.; Vlce
Nature 1965, 206, 295−296. (b) Muller, E.; Segnitz, A.; Langer, E.
(
M.Y.)] from MEXT, Advanced Catalytic Transformation
program for Carbon utilization (ACT-C) from JST (M.M.),
and grants from Natural Sciences from the Mitsubishi
Foundation (M.Y.), Toray Science Foundation (M.Y.), and
Asahi Glass Foundation (M.Y. and M.M.). The computations
were performed at the Research Center for Computational
Science, Okazaki, Japan.
(
̌
k, A. A.
̈
Tetrahedron Lett. 1969, 10, 1129−1132. (c) Kaneda, K.; Azuma, H.;
Wayaku, M.; Teranishi, S. Chem. Lett. 1974, 3, 215−216. (d) Chatani,
N.; Ie, Y.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 1999, 121, 8645−
8
646. (e) Daugulis, O.; Brookhart, M. Organometallics 2004, 23, 527−
5
34. (f) Dermenci, A.; Whittaker, R.; Dong, G. Org. Lett. 2013,
REFERENCES
DOI: 10.1021/ol400815y.
■
(
1
1) Reviews on C−H activation: (a) Crabtree, R. H. Chem. Rev.
(7) The IR absorption for CO stretching of 3 appeared at lower
−1
985, 85, 245−269. (b) Halpern, J. Inorg. Chim. Acta 1985, 100, 41−
wavenumber (1933 cm ) compared to that of ClRh(PPh ) CO
3 2
7a 3a
−1
4
(
8. (c) Shilov, A. E.; Shul’pin, G. B. Chem. Rev. 1997, 97, 2879−2932.
(1960 cm ), and even the Rh−CO bond length of 3 [1.908(3) Å]
7b
d) Jones, W. D. Top. Organomet. Chem. 1999, 9−46. (e) Kakiuchi, F.;
was longer than that of ClRh(PPh ) CO [1.821(5) Å]. This suggests
3 2
Murai, S. Top. Organomet. Chem. 1999, 47−79. (f) Jia, C.; Kitamura,
T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633−639. (g) Handbook of
C−H Transformations; Dyker, G., Ed.; Wiley-VCH: Weinheim, 2005.
that the rhodium center in 3 is considerably more electron-rich,
perhaps due to the strongly electron-donating nature of the boryl
ligand. The strong donation accelerates the formation of the low-
coordinate species, which would be a key elementary step for the C−C
cleavage. (a) Serp, P.; Hernandez, M.; Richard, B.; Kalck, P. Eur. J.
(
h) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42,
1074−1086. (i) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q.
C
dx.doi.org/10.1021/ja403461f | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX