Page 13 of 14
Journal of the American Chemical Society
s−1 for H
Fettinger, J. C.; Berben, L. A. Control of Ligand pK
Production Science 2011, 333, 863; (c) Sherbow, T. J.;
Values Tunes the
(27) Zhang, L.; Nguyen, D. H.; Raffa, G.; Trivelli, X.; Capet, F.;
2
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
a
Desset, S.; Paul, S.; Dumeignil, F.; Gauvin, R. M. Catalytic Conversion
of Alcohols into Carboxylic Acid Salts in Water: Scope, Recycling,
and Mechanistic Insights ChemSusChem 2016, 9, 1413.
(28) Huff, C. A.; Kampf, J. W.; Sanford, M. S. Reversible carbon–
carbon bond formation between carbonyl compounds and a
ruthenium pincer complex Chem. Commun. 2013, 49, 7147.
(29) Lilio, A. M.; Reineke, M. H.; Moore, C. E.; Rheingold, A. L.;
Takase, M. K.; Kubiak, C. P. Incorporation of Pendant Bases into
Electrocatalytic Dihydrogen Evolution Mechanism in a Redox-
Active Aluminum(III) Complex Inorg. Chem. 2017, 56, 8651; (d)
Rountree, E. S.; Martin, D. J.; McCarthy, B. D.; Dempsey, J. L. Linear
Free Energy Relationships in the Hydrogen Evolution Reaction:
Kinetic Analysis of a Cobaloxime Catalyst ACS Catal. 2016, 6, 3326.
(16) (a) Taheri, A.; Thompson, E. J.; Fettinger, J. C.; Berben, L. A.
An Iron Electrocatalyst for Selective Reduction of CO
in Water: Including Thermochemical Insights ACS Catal. 2015, 5,
140; (b) Waldie, K. M.; Ostericher, A. L.; Reineke, M. H.; Sasayama,
A. F.; Kubiak, C. P. Hydricity of Transition-Metal Hydrides:
2
to Formate
Rh(diphosphine)
And Catalytic CO
Complexes J. Am. Chem. Soc. 2015, 137, 8251.
2
Complexes: Synthesis, Thermodynamic Studies,
+
7
2
2 2 2
Hydrogenation Activity of [Rh(P N ) ]
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
Thermodynamic Considerations for CO
Reduction ACS Catal.
(30) (a) Lense, S.; Ho, M.-H.; Chen, S.; Jain, A.; Raugei, S.; Linehan,
J. C.; Roberts, J. A. S.; Appel, A. M.; Shaw, W. Incorporating Amino
Acid Esters into Catalysts for Hydrogen Oxidation: Steric and
Electronic Effects and the Role of Water as a Base Organometallics
2012, 31, 6719; (b) Wilson, A. D.; Newell, R. H.; McNevin, M. J.;
Muckerman, J. T.; DuBois, M. R.; DuBois, D. L. Hydrogen oxidation
and production using nickel-based molecular catalysts with
positioned proton relays J. Am. Chem. Soc. 2006, 128, 358.
2
2018, 8, 1313.
(
17) Jeletic, M. S.; Hulley, E. B.; Helm, M. L.; Mock, M. T.; Appel, A.
M.; Wiedner, E. S.; Linehan, J. C. Understanding the Relationship
Between Kinetics and Thermodynamics in CO Hydrogenation
2
Catalysis ACS Catal. 2017, 7, 6008.
(18) (a) Gnanaprakasam, B.; Zhang, J.; Milstein, D. Direct
Synthesis of Imines from Alcohols and Amines with Liberation of
H2 Angew. Chem. Int. Ed. 2010, 49, 1468; (b) Gnanaprakasam, B.;
Balaraman, E.; Ben-David, Y.; Milstein, D. Synthesis of Peptides and
Pyrazines from β-Amino Alcohols through Extrusion of H2
Catalyzed by Ruthenium Pincer Complexes: Ligand-Controlled
Selectivity Angew. Chem. Int. Ed. 2011, 50, 12240; (c) Xie, Y.; Ben-
David, Y.; Shimon, L. J. W.; Milstein, D. Highly Efficient Process for
Production of Biofuel from Ethanol Catalyzed by Ruthenium Pincer
Complexes J. Am. Chem. Soc. 2016, 138, 9077.
(31) Chen, L.; Guo, S.-X.; Li, F.; Bentley, C.; Horne, M.; Bond, A. M.;
Zhang, J. Electrochemical Reduction of CO at Metal Electrodes in a
2
Distillable Ionic Liquid ChemSusChem 2016, 9, 1271.
(32) McCarthy, B. D.; Martin, D. J.; Rountree, E. S.; Ullman, A. C.;
Dempsey, J. L. Electrochemical Reduction of Brønsted Acids by
Glassy Carbon in Acetonitrile—Implications for Electrocatalytic
Hydrogen Evolution Inorg. Chem. 2014, 53, 8350.
(33) Kaljurand, I.; Saame, J.; Rodima, T.; Koppel, I.; Koppel, I. A.;
Kögel, J. F.; Sundermeyer, J.; Köhn, U.; Coles, M. P.; Leito, I.
Experimental Basicities of Phosphazene, Guanidinophosphazene,
and Proton Sponge Superbases in the Gas Phase and Solution J.
Phys. Chem. A 2016, 120, 2591.
(34) Simler, T.; Karmazin, L.; Bailly, C.; Braunstein, P.;
Danopoulos, A. A. Potassium and Lithium Complexes with
Monodeprotonated, Dearomatized PNP and PNCNHC Pincer-Type
Ligands Organometallics 2016, 35, 903.
(35) Francke, R.; Schille, B.; Roemelt, M. Homogeneously
Catalyzed Electroreduction of Carbon Dioxide—Methods,
Mechanisms, and Catalysts Chem. Rev. 2018, 118, 4631.
(36) (a) Buncel, E.; Menon, B. Carbanion mechanisms. 6.
Metalation of arylmethanes by potassium hydride/18-crown-6
ether in tetrahydrofuran and the acidity of hydrogen J. Am. Chem.
Soc. 1977, 99, 4457; (b) Morris, R. H. Brønsted–Lowry Acid
Strength of Metal Hydride and Dihydrogen Complexes Chem. Rev.
2016, 116, 8588.
(
19) (a) Zeng, R.; Feller, M.; Ben-David, Y.; Milstein, D.
Hydrogenation and Hydrosilylation of Nitrous Oxide
Homogeneously Catalyzed by a Metal Complex J. Am. Chem. Soc.
2017, 139, 5720; (b) Mukherjee, A.; Srimani, D.; Ben-David, Y.;
Milstein, D. Low-Pressure Hydrogenation of Nitriles to Primary
Amines Catalyzed by Ruthenium Pincer Complexes. Scope and
mechanism ChemCatChem 2017, 9, 559.
(
20) Li, Z.; Rayder, T. M.; Luo, L.; Byers, J. A.; Tsung, C.-K.
Aperture-Opening Encapsulation of a Transition Metal Catalyst in
a Metal–Organic Framework for CO Hydrogenation J. Am. Chem.
2
Soc. 2018, 140, 8082.
(
21) Wiedner, E. S.; Chambers, M. B.; Pitman, C. L.; Bullock, R. M.;
Miller, A. J. M.; Appel, A. M. Thermodynamic Hydricity of Transition
Metal Hydrides Chem. Rev. 2016, 116, 8655.
(22) Bauer, J. O.; Leitus, G.; Ben-David, Y.; Milstein, D. Direct
Synthesis of Symmetrical Azines from Alcohols and Hydrazine
Catalyzed by a Ruthenium Pincer Complex: Effect of Hydrogen
Bonding ACS Catalysis 2016, 6, 8415.
a 2
(37) The pK of H in THF was first measured in ref 36a and a
(
23) Montag, M.; Zhang, J.; Milstein, D. Aldehyde Binding through
value of 35.5 was obtained. This was later refined to be ~ 49 (ref
36b). This gives a value of 66.8 +/- 1.4 kcal/mol for the free energy
change associated with KH2- which is used throughout this
manuscript. A value of 68.7 kcal/mol was recently calculated and
we report hydricities using the new value reported in the following
reference in parentheses. Brereton, K; Jadrich, C.; Stratakes, B.,
Miller, A. J. M. Organometallics, 2019, accepted.
(38) Tsay, C.; Livesay, B. N.; Ruelas, S.; Yang, J. Y. Solvation Effects
on Transition Metal Hydricity J. Am. Chem. Soc. 2015, 137, 14114.
(39) Lilio, A. M.; Reineke, M. H.; Moore, C. E.; Rheingold, A. L.;
Takase, M. K.; Kubiak, C. P. Incorporation of Pendant Bases into
Reversible C–C Coupling with the Pincer Ligand upon Alcohol
Dehydrogenation by a PNP–Ruthenium Catalyst J. Am. Chem. Soc.
2
012, 134, 10325.
24) Vogt, M.; Gargir, M.; Iron, M. A.; Diskin-Posner, Y.;
Ben-David, Y.; Milstein, D. A New Mode of Activation of CO by
(
2
Metal–Ligand Cooperation with Reversible C-C and M-O Bond
Formation at Ambient Temperature Chem. Eur. J. 2012, 18, 9194.
(25) Kothandaraman, J.; Goeppert, A.; Czaun, M.; Olah, G. A.;
Surya Prakash, G. K. CO capture by amines in aqueous media and
2
its subsequent conversion to formate with reusable ruthenium and
iron catalysts Green Chemistry 2016, 18, 5831.
Rh(diphosphine)
And Catalytic CO
Complexes J. Am. Chem. Soc. 2015, 137, 8251.
(40) Kütt, A.; Selberg, S.; Kaljurand, I.; Tshepelevitsh, S.; Heering,
A.; Darnell, A.; Kaupmees, K.; Piirsalu, M.; Leito, I. pK values in
2
Complexes: Synthesis, Thermodynamic Studies,
+
(
26) For instability of related species with the PNN ligand, see:
2
2 2 2
Hydrogenation Activity of [Rh(P N ) ]
(a) Kohl, S. W.; Weiner, L.; Schwartsburd, L.; Konstantinovski, L.;
Shimon, L. J. W.; Ben-David, Y.; Iron, M. A.; Milstein, D. Consecutive
Thermal H
2
and Light-Induced O
2
Evolution from Water Promoted
a
by a Metal Complex Science 2009, 324, 74; (b) Balaraman, E.;
Gunanathan, C.; Zhang, J.; Shimon, L. J. W.; Milstein, D. Efficient
hydrogenation of organic carbonates, carbamates and formates
indicates alternative routes to methanol based on CO2 and CO Nat
Chem 2011, 3, 609.
organic chemistry – Making maximum use of the available data
Tetrahedron Lett. 2018, 59, 3738.
(41) Kar, S.; Sen, R.; Goeppert, A.; Prakash, G. K. S. Integrative
CO2 Capture and Hydrogenation to Methanol with Reusable
1
3
ACS Paragon Plus Environment