M. I. Burguete et al. / Tetrahedron 63 (2007) 9493–9501
9499
(m, 2H), 3.20 (m, 2H), 3.80 (d, 2H, J¼14.8 Hz), 4.70 (d, 2H,
J¼14.7 Hz), 6.84 (br s, 2H), 7.41 (s, 2H), 7.56 (m, 2H), 8.11
(m, 2H); 13C NMR (125 MHz, CDCl3) d 17.6, 20.1, 26.0,
31.3, 38.4, 52.0, 70.1, 124.7, 125.4, 126.4, 132.0, 136.3,
173.6; FTIR (KBr) 3373, 2958, 1671, 1509 cmꢀ1; UV–vis
(CH2Cl2) (lmax, 3) 288 nm, 7715 Mꢀ1 cmꢀ1; ESIMS m/z¼
461.6 (M+Na+); HRMSEI+ m/z calcd for C26H38N4O2
(M+) 438.299477, found 438.299698.
water and dried in vacuum for 20 h at 65 ꢁC. Yield of 14:
3.98 g, 95%; mp¼155–156 ꢁC; 1H NMR (500 MHz, d6-
DMSO) d 0.84 (m, 9H), 1.39 (m, 2H), 1.92 (m, 1H), 2.97
(m, 1H), 3.06 (m, 1H), 3.79 (t, 1H, J¼8.0 Hz), 5.02 (s,
2H), 7.18 (d, 1H, J¼ 8.9 Hz), 7.32 (m, 4H), 7.87 (s, 1H);
13C NMR (125 MHz, d6-DMSO) d 11.2, 18.1, 19.1, 22.1,
30.1, 40.1, 60.2, 65.2, 127.5, 127.6, 128.2, 137.0, 155.9,
170.8; FTIR (KBr) 3300, 2962, 1686, 1642 cmꢀ1; ESIMS
m/z¼315.3 (M+Na+), 331.2 (M+K+).
4.2.1.4. Synthesis of 2a. Yield 280 mg, 20%; mp¼110–
113 ꢁC. [a]D20 +77.9 (c 0.01, CH2Cl2); 1H NMR (500 MHz,
CDCl3) d 2.11 (m, 2H), 2.18 (br s, 2H), 2.36 (m, 1H), 2.57
(m, 1H), 2.67 (m, 1H), 3.04 (m, 2H), 3.28 (m, 2H), 3.38
(m, 1H), 3.40 (d, 1H, J¼14.0 Hz), 3.57 (dd, 1H, J¼10.5,
4.0 Hz), 4.03 (d, 1H, J¼14.5 Hz), 4.12 (d, 1H, J¼
14.5 Hz), 4.71 (d, 1H, J¼14.0 Hz), 6.07 (br s, 1H), 6.15
(br s, 1H), 7.27–7.39 (m, 12H), 7.56 (m, 2H), 8.10 (d, 1H,
J¼9 Hz), 8.17 (d, 1H, J¼9.0 Hz); 13C NMR (125 MHz,
CDCl3) d 38.8, 39.1, 39.9, 40.2, 49.7, 53.3, 64.8, 66.2,
124.1, 124.3, 126.3, 126.4, 126.9, 127.0, 127.4, 127.5,
128.8, 128.9, 129.0, 129.1, 131.4, 132.5, 134.4, 137.7,
137.8, 138.4, 174.3, 174.9; FTIR (KBr) 3369, 3050, 1654,
4.2.1.8. Synthesis of 15. Product 14 (2.20 g, 7.52 mmol)
was added to 15 mL of HBr/AcOH (33%) and the mixture
was stirred at room temperature until CO2 evolution ceased.
To the resulting mixture 50 mL of distilled water was added
and then extracted with chloroform (50 mL, 3ꢂ). Solid
NaOH was then added up to a pH value of 12 and the result-
ing solution was saturated with NaCl and extracted with di-
chloromethane (50 mL, 3ꢂ). The organic phase was dried
over MgSO4 and evaporated under vacuum to obtain the de-
sired product 15 (oil). Yield 1.07 g, 90%; 1H NMR
(500 MHz, CDCl3) d 0.77 (d, 3H, J¼6.5 Hz), 0.87 (t, 3H,
J¼8.5 Hz), 0.92 (d, 3H, J¼7.5 Hz), 1.34 (br s, 2H), 1.47
(m, 2H), 2.22 (m, 1H), 3.16 (m, 3H), 7.28 (br s, 1H); 13C
NMR (125 MHz, CDCl3) d 11.4, 16.1, 19.7, 23.0, 30.9,
40.7, 60.3, 174.3; FTIR (NaCl) 3304, 2962, 1649,
1528 cmꢀ1; ESIMS m/z¼181.2 (M+Na+), 192.2 (M+K+).
1517 cmꢀ1
;
UV–vis (CH2Cl2) (lmax
;
,
3) 290 nm,
7278 Mꢀ1 cmꢀ1
ESIMS m/z¼507.4 (M+H+), 529.4
(M+Na+); HRMSEI+ m/z calcd for C32H34N4O2 (M+)
506.268177, found 506.268860.
4.2.1.5. Synthesis of 2b. Yield 509 mg, 35%; mp¼74–
4.2.1.9. Synthesis of 3. Analogously to the synthesis of
cyclophanes, coupling between 15 and 1,4-bis(bromome-
thyl)naphthalene (12) gave 3 (white solid). Yield 730 mg,
1
79 ꢁC. [a]D20 ꢀ11.8 (c 0.01, CH2Cl2); H NMR (500 MHz,
CDCl3, 328 K) d 2.24 (m, 2H), 2.53 (m, 2H), 2.65 (m,
4H), 2.77 (m, 2H), 3.22 (dd, 2H, J¼14.1, 4.4 Hz), 3.56 (br
s, 2H), 3.80 (br s, 2H), 4.41 (m, 2H), 6.40 (br s, 2H), 7.21
(t, 2H, J¼7.0 Hz), 7.25 (d, 4H, J¼7.0 Hz), 7.26 (s, 2H),
7.30 (t, 4H, J¼7.0 Hz), 7.35 (m, 2H), 8.00 (br s, 2H); 13C
NMR (125 MHz, CDCl3) d 27.6, 29.4, 35.9, 39.0, 65.1,
124.3, 125.8, 126.5, 128.4, 129.1, 132.4, 138.1, 175.0;
FTIR (KBr) 3339, 2935, 1651, 1520 cmꢀ1; UV–vis
(CH2Cl2) (lmax, 3) 290 nm, 7496 Mꢀ1 cmꢀ1; ESIMS m/z¼
521.6 (M+H+), 543.6 (M+Na+); HRMSEI+ m/z calcd for
C33H36N4O2 (M+) 520.283827, found 520.281919.
1
47%; mp¼158–160 ꢁC. [a]D20 ꢀ9.9 (c 0.01, CH2Cl2); H
NMR (500 MHz, CDCl3) d 0.86–0.88 (m, 12H), 0.97 (d,
6H, J¼6.9 Hz), 1.41 (m, 4H), 1.66 (br s, 2H), 2.15 (m,
2H), 3.05 (m, 4H), 3.18 (m, 2H), 4.16 (s, 4H), 7.16 (m,
2H), 7.38 (s, 2H), 7.57 (m, 2H), 8.14 (m, 2H); 13C NMR
(125 MHz, CDCl3) d 11.5, 17.7, 19.7, 22.9, 31.4, 40.6,
51.6, 68.5, 124.3, 126.1, 126.2, 132.1, 135.3, 173.4; FTIR
(KBr) 3308, 2961, 1641, 1556 cmꢀ1; UV–vis (CH2Cl2)
(lmax, 3) 288 nm, 7644 Mꢀ1 cmꢀ1; ESIMS m/z¼469.4
(M+H+), 491.3 (M+Na+); HRMSEI+ m/z calcd for
C28H43N4O2 ((Mꢀ1)+) 467.338602, found 467.338524.
4.2.1.6. Synthesis of 2c. Yield 365 mg, 32%; mp¼71–
1
75 ꢁC. [a]D20 ꢀ11.9 (c 0.01, CH2Cl2); H NMR (500 MHz,
4.2.1.10. Synthesis of 4. Analogously to the synthesis of
cyclophanes, coupling between 15 and 1-(chloromethyl)-
naphthalene (16) gave 4 (white solid). Yield 184 mg, 55%;
mp¼80–81 ꢁC; 1H NMR (500 MHz, CDCl3) d 0.87 (d, 3H,
J¼7.0 Hz), 0.88 (t, 3H, J¼6.0 Hz), 0.96 (d, 3H,
J¼7.0 Hz), 1.42 (m, 2H), 2.19 (m, 1H), 3.10 (m, 2H), 3.19
(m, 1H), 4.20 (s, 2H), 7.24 (br s, 1H), 7.44 (m, 1H), 7.51
(m, 1H), 7.55 (m, 1H), 7.81 (m, 2H), 7.88 (d, 1H,
J¼8.0 Hz), 8.08 (d, 1H, J¼8.0 Hz); 13C NMR (125 MHz,
CDCl3) d 11.4, 17.8, 19.5, 22.9, 31.2, 40.6, 51.4, 68.4,
123.2, 125.5, 125.8, 126.4, 128.3, 129.0, 131.6, 133.9,
170.0; FTIR (KBr) 3290, 2960, 1637, 1555 cmꢀ1; UV–vis
(CH2Cl2) (lmax, 3) 282 nm, 6449 Mꢀ1 cmꢀ1; ESIMS m/z¼
299.3 (M+H+), 321.3 (M+Na+); HRMSEI+ m/z calcd for
C19H26N2O (M+) 298.204514, found 298.203308.
CDCl3) d 0.41 (m, 2H), 0.61 (m, 2H), 1.97 (br s, 2H), 2.28
(m, 2H), 2.64 (d, 1H, J¼10.5 Hz), 2.67 (d, 1H,
J¼10.5 Hz), 3.24 (dd, 2H, J¼14.1, 10.5 Hz), 3.39 (dd, 2H,
J¼14.0, 3.5 Hz), 3.60 (dd, 2H, J¼14.0, 3.5 Hz), 3.65 (d,
2H, J¼15.0 Hz), 4.46 (d, 2H, J¼15.0 Hz), 6.82 (br s, 2H),
7.29–7.46 (m, 12H), 7.53 (m, 2H), 7.95 (m, 2H); 13C
NMR (125 MHz, CDCl3) d 26.0, 29.8, 38.6, 40.0, 51.2,
53.6, 65.8, 124.1, 126.5, 127.4, 129.2, 129.3, 131.8, 137.8,
177.2; FTIR (KBr) 3349, 2927, 1651, 1656 cmꢀ1; UV–vis
(CH2Cl2) (lmax, 3) 289 nm, 7307 Mꢀ1 cmꢀ1; ESIMS m/z¼
535.6 (M+H+), 557.6 (M+Na+); HRMSEI+ m/z calcd for
C34H38N4O2 (M+) 534.299477, found 534.298988.
4.2.1.7. Synthesis of 14. The N-hydroxysuccinimide es-
ter of N-Cbz-L-valine (5.00 g, 14.35 mmol) was dissolved
in anhydrous THF (40 mL) cooled in an ice bath. n-Propyl-
amine (1.20 mL, 14.35 mmol) dissolved in dry THF
(10 mL) was added in several stages. The reaction mixture
was refluxed for 4 h and then the solvent was evaporated
at reduced pressure. The white solid was washed with cold
Acknowledgements
ꢀ
Financial support from the Spanish Ministerio de Educacion
y Ciencia (MEC, projects CTQ2006-15672-C05-02/BQU