7644
J . Org. Chem. 1996, 61, 7644-7645
Sch em e 1
Ben za n n u la tion via Sequ en tia l
Meta l-P r om oted High er -Or d er
Cycloa d d ition -Ra m ber g-Ba1ck lu n d
Rea r r a n gem en t
J ames H. Rigby* and Namal C. Warshakoon
Ta ble 1. Cr (0)-P r om oted
Cycloa d d ition -Ra m ber g-Ba1ck lu n d
Department of Chemistry, Wayne State University,
Detroit, Michigan 48202-3489
Received August 26, 1996
Aromatic ring assembly from acyclic precursors (ben-
zannulation) has been the subject of considerable study
in recent years.1 Advances in this field based on Fischer
carbene complexes (the Do¨tz reaction),2 cobalt-mediated
alkyne cyclotrimerization,3 cyclobutenone and cyclobutene-
dione rearrangements,4 vinyl ketene cycloaddition,5 as
well as other cyclization protocols6 permit construction
of a wide range of fused arene ring systems, often of
considerable complexity.
We now disclose a novel benzannulation sequence
based on chromium(0)-promoted [6π + 4π] cycloaddition7
followed by a Ramberg-Ba¨cklund rearrangement8
(Scheme 1). A noteworthy feature of this two-operation
methodology that sets it apart from many related annu-
lation procedures is the simultaneous production of two
rings during the cyclization event. The high level of
convergency that characterizes the overall process is also
significant; for instance, all of the carbon atoms compris-
ing the arene substructures are introduced in a single
step via the thiepin dioxide triene system. Furthermore,
since a wide range of diene partners are known to
a
Typical reaction conditions: (A) hν (U-glass), ClCH2CH2Cl; (ii)
t-BuOK/THF, -105 °C; (iii) N-chlorosuccinimide, THF; (iv) t-
b
BuOK/THF, -105 °C. Overall isolated yield for entire sequence.
c Yields depressed due to product volatility. Reference 14.
d
participate in metal-mediated higher-order cycloaddition,
the methodology offers versatility with regard to potential
target structures. These aspects of the chemistry com-
bine to render the sequence particularly amenable to the
rapid buildup of molecular complexity.
Equation 1 presents a typical benzannulation se-
quence. Irradiation (uranium glass filter) of readily
(1) For a review covering certain aspects of this chemistry, see:
Bamfield, P.; Gordon, P. F. Chem. Soc. Rev. 1984, 13, 441.
(2) Reviews: (a) Do¨tz, K. H. Angew Chem., Int. Ed. Engl. 1984, 23
587. (b) Wulff, W. D. In Advances in Metal-Organic Chemistry;
Liebeskind, L. S., Ed.; J AI Press: Greenwich, CT, 1989; Vol. 1, pp 209-
393. Selected recent developments: (c) Hsung, R. P.; Wulff, W. D.;
Rheingold, A. L. J . Am. Chem. Soc. 1994, 116, 6449. (d) Semmelhack,
M. F.; Ho, S.; Cohen, D.; Steigerwald, M.; Lee, M. C.; Lee, G.; Gilbert,
A. M.; Wulff, W. D.; Ball, R. G. Ibid. 1994, 116, 7108. (e) Chamberlain,
S.; Waters, M. L.; Wulff, W. D. Ibid. 1994, 116, 3113. (f) Gross, M. F.;
Finn, M. G. Ibid. 1994, 116, 10921. (g) Painter, J . E.; Quayle, P.; Patel,
P. Tetrahedron Lett. 1995, 36, 8089. (h) Hsung, R. P.; Xu, Y. -C.; Wulff,
W. D. Ibid. 1995, 36 8159. (i) Do¨tz, K. H.; Pfeiffer, J . J . Chem. Soc.,
Chem. Commun. 1996, 895.
(3) (a) Vollhardt, K. P. C. Angew Chem., Int. Ed. Engl. 1984, 23,
539. (b) Earl, R. A.; Vollhardt, K. P. C. J . Org. Chem. 1984, 49, 4786.
(c) Liebeskind, L. S.; Leeds, J . P.; Baysdon, S. L.; Iyer, S. J . Am. Chem.
Soc. 1984, 106, 6451. (d) J ohnson, E. P.; Vollhardt, K. P. C. Ibid. 1991,
113, 381. (e) Saito, S.; Salter, M. M.; Genorgyan, V.; Tsuboya, N.;
Tando, K.; Yamamoto, Y. J . Am. Chem. Soc. 1996, 118, 3970.
(4) (a) Liebeskind, L. S.; Wang, J . J . Org. Chem. 1993, 58, 3550. (b)
Krysan, D. J .; Gurski, A.; Liebeskind, L. S. J . Am. Chem. Soc. 1992,
114, 1412. (c) Liebeskind, L. S. Tetrahedron 1989, 45, 3053. (d) Foland,
L. D.; Karlsson, J . O.; Perri, S. T.; Schwabe, R.; Xu, S. L.; Patil, S.;
Moore, H. W. J . Am. Chem. Soc. 1989, 111, 975.
(5) (a) Danheiser, R. L.; Brisbois, R. G.; Kowalczyk, J . J .; Miller, R.
F. J . Am. Chem. Soc. 1990, 112, 3093. (b) Danheiser, R. L.; Miller, R.
F.; Brisbois, R. G.; Park, S. Z. J . Org. Chem. 1990, 55, 1959. (c)
Danheiser, R. L.; Sard, H. Ibid. 1980, 45, 4810.
(6) (a) Chen, Y. P.; Chantegrel, B.; Deshayes, C. Heterocycles 1995,
41, 175. (b) Ciufolini, M. A.; Weiss, T. J . Tetrahedron Lett. 1994, 35,
1127. (c) Hauser, F. M.; Rhee, R. P. J . Org. Chem. 1978, 43, 178. (d)
Hauser, F. M.; Caringal, Y. J . Org. Chem. 1990, 55, 555. (e) Kraus, G.
A.; Cho, H.; Crowley, S.; Roth, B.; Sugimoto, H.; Prugh, S. Ibid. 1983,
48, 3439. (f) Tius, M. A.; Ali, S. Ibid. 1982, 47, 3163.
available (η6-thiepin 1,1-dioxide)tricarbonylchromium(0)
(1)9 in the presence of diene 210 provided cycloadduct 311
in 75% yield. Treatment of this tricycle in one pot with
t-BuOK in THF at -105 °C12 followed by trapping of the
intermediate carbanion with N-chlorosuccinimide and
exposure of the resultant mixture to a second equivalent
of t-BuOK afforded the known hexahydroanthracene 4
in quite good yield.13
A noteworthy feature of this benzannulation sequence
is the capability of assembling polycyclic products as
single diastereoisomers. This point is illustrated in eqs
2 and 3 wherein cycloaddition of chiral, nonracemic
(9) Rigby, J . H.; Ateeq, H. S.; Krueger, A. C. Tetrahedron Lett. 1992,
23, 5873.
(7) For reviews, see: (a) Rigby, J . H. Acc. Chem. Res. 1993, 26, 579.
(b) Rigby, J . H. In Advances in Metal-Organic Chemistry; Liebeskind,
L. S., Ed.; J AI Press: Greenwich, CT, 1995; Vol. 4, pp 89-127.
(8) Review: (a) Paquette, L. A. Org. React. 1977, 25, 1. Recent uses
in synthesis: (b) Grumann, A.; Marley, H.; Taylor, R. J . K. Tetrahedron
Lett. 1995, 36, 7767. (c) Doomes, E.; McKnight, A. A. J . Heterocycl.
Chem. 1995, 32, 1467. (d) Alvarez, E.; Diaz, M. T.; Hanxing, L; Martin,
J . D. J . Am. Chem. Soc. 1995, 117, 1437. (e) Trost, B. M.; Shi, Z. Ibid.
1994, 116, 7459. (f) Nicolaou, K. C.; Zuccarello, G.; Riemer, C.; Estevez,
V. A.; Dai, W.-M. Ibid. 1992, 114, 7360.
(10) Block, E.; Aslam, M. Org. Synth. 1987, 65, 90.
(11) This compound exhibited spectral (1H NMR, 13C NMR, IR) and
analytical (combustion analysis and/or HRMS) data consistent with
the assigned structure.
(12) Metalated dihydrothiepin 1,1-dioxides rapidly decompose at
temperatures above -105 °C: Rigby, J . H.; Kreuger, A. C. Synlett 1993,
829.
(13) Thummel, R. P.; Cravey, W. E.; Cantu, D. B. J . Org. Chem.
1980, 45, 1633.
(14) Yasuda, M.; Pac, C.; Sakurai, H. J . Org. Chem. 1981, 46, 788.
S0022-3263(96)01641-6 CCC: $12.00 © 1996 American Chemical Society