Communication
Organic & Biomolecular Chemistry
A plausible mechanism would involve elimination of the
intermediate indium alcoholate 7 by the action of the 2-alkoxy
group, producing (E)-nitroalkene 6a (Scheme 2).
H. Hattori, Appl. Catal., A, 2003, 247, 65–74; (h) R. Ballini,
D. Fiorini, M. V. Gil and A. Palmieri, Tetrahedron, 2004, 60,
2799–2804.
The satisfactory results obtained in the synthesis of racemic
nitro alcohols 3 prompted us to test the usefulness of this
methodology for the synthesis of enantiopure 1-nitroalkan-2-
ols. Our studies were carried out with chiral sugar aldehydes
2m–o, which upon reaction with indium nitronates of nitro-
alkanes 1 under the same reaction conditions as above, pro-
vided the corresponding 1-nitroalkan-2-ols 3o–r in moderate to
good yields and good diastereomeric ratios (see Table 3).21
The major diastereomers were always those predicted by
the Felkin–Anh model. Upon addition of nitroethane 1e, the
anti diastereoselectivity is also excellent (Table 3, entry 4).
In conclusion, we have developed a new route to form
indium nitronates directly from nitroalkanes by deprotonation
with n-BuLi followed by transmetalation with indium trichlo-
ride. This method provides easier access to indium nitronates
compared with the existing procedures that need α-bromo-
7 (a) D. Crich, K. Ranganathan, S. Rumthao and M. Shirai,
J. Org. Chem., 2003, 68, 2034–2037; (b) F. A. Luzzio, J. P. Ott
and D. Y. Duveau, J. Org. Chem., 2006, 71, 5027–5030;
(c) D. Crich, M. Shirai, F. Brebion and S. Rumthao, Tetrahe-
dron, 2006, 62, 6501–6518.
8 (a) J. M. Concellón, H. Rodríguez-Solla and C. Concellón,
J. Org. Chem., 2006, 71, 7919–7922; (b) A. S. Mahasneh,
Z. Naturforsch., 2005, 60, 416–418.
9 (a) R. G. Soengas and A. M. Estévez, Eur. J. Org. Chem.,
2010, 5190–5196; (b) H. Rodríguez-Solla, N. Alvaredo and
R. G. Soengas, Synlett, 2012, 2083–2086; (c) R. G. Soengas
and A. M. Estévez, Tetrahedron Lett., 2012, 53, 570–574;
(d) R. G. Soengas and A. M. Estévez, Synlett, 2010, 2625–
2627; (e) R. G. Soengas and A. M. S. Silva, Synlett, 2012,
873–876; (f) R. G. Soengas and A. M. S. Silva, Tetrahedron,
2013, 69, 3425–3431.
nitroalkanes. The Henry reaction of this indium organometal- 10 (a) K. Wade and A. J. Banister, in Comprehensive Inorganic
lics with aldehydes afforded β-nitroalkanols in moderate to
high yields and anti-diastereoselectivity.
Chemistry, ed. J. C. Bailar Jr., H. J. Emeléus, R. Nyholm and
A. E. Trotman-Dikenson, Pergamon, Oxford, UK, 1973, vol.
1, ch. 12, p. 1072; (b) I. J. Worrall and J. D. Smith, in
Organometallic Compounds of Aluminum, Gallium, Indium
and Thallium, ed. A. McKillop, J. D. Smith and I. J. Worrall,
Chapman and Hall, London, UK, 1985, p. 137.
The use of chiral sugar aldehydes afforded the corres-
ponding carbohydrate-derived β-nitroalkanols with excellent
stereoselectivity. The use of 2-hydroxybenzaldehydes allows
establishment of a new diastereoselective synthesis of (E)-2-(2-
nitrovinyl)phenols in good yields.
11 (a) Z.-L. Shen, S.-Y. Wang, Y.-K. Chok, Y.-H. Xu and
T.-P. Loh, Chem. Rev., 2013, 113, 271–401; (b) P. Cintas,
Synlett, 1995, 1087–1096; (c) C.-J. Li, Tetrahedron, 1996, 52,
5643–5668; (d) C.-J. Li and T. H. Chan, Tetrahedron, 1999,
55, 11149–11176; (e) K. K. Chauhan and C. G. Frost,
J. Chem. Soc., Perkin Trans. 1, 2000, 3015–3019;
(f) B. C. Ranu, Eur. J. Org. Chem., 2000, 2347–2356;
(g) J. Podelech and T. C. Maier, Synthesis, 2003, 633–655;
(h) V. Nair, S. Ros, C. N. Jayan and B. S. Pillai, Tetrahedron,
2004, 68, 1959–1982.
Notes and references
1 L. Henry, Bull. Soc. Chim. Fr., 1895, 13, 999–1004.
2 (a) F. A. Luzzio, Tetrahedron, 2001, 57, 915–1138;
(b) C. Palomo, M. Oiarbide and A. Laso, Eur. J. Org. Chem.,
2007, 2561–2574; (c) P. P. Bora and G. Bez, Eur. J. Org.
Chem., 2013, 2922–2929.
3 (a) N. Ono, The Nitro Group in Organic Synthesis, Wiley- 12 (a) G. B. Deacon and J. C. Parrot, Aust. J. Chem., 1971, 24,
VCH, 2001; (b) Organic Nitro Chemistry Series, ed. H. Feuer,
Wiley-VCH, 2001, ch. 2.
1771–1779; (b) M. J. S. Gynane, L. G. Waterworth and
I. J. Worrall, J. Organomet. Chem., 1972, 40, C9–C10.
4 (a) V. Jäger and R. Ohrlein, Tetrahedron Lett., 1988, 29, 13 J. J. Eisch, J. Am. Chem. Soc., 1962, 84, 3605–3610.
6083–6086; (b) A. G. M. Barret, C. Robyr and C. D. Spilling, 14 (a) F. Runge, W. Zimmermann, H. Pfeiffer and I. Pfeiffer,
J. Org. Chem., 1989, 54, 1233–1234; (c) A. Gómez-Sánchez,
R. Fernández, C. Gasch and J. E. Vílchez, Tetrahedron Lett.,
1991, 32, 3225–3228.
Z.
Anorg.
Allg.
Chem.,
1952,
267,
39–48;
(b) J. L. W. Pohlmann and F. E. Brinckmann, Z. Natur-
forsch., 1965, 20b, 5–11.
5 D. Seebach and F. Lehr, Angew. Chem., Int. Ed. Engl., 1976, 15 (a) T. Hirashita, K. Kinoshita, H. Yamamura, M. Kawai and
15, 505–506.
S. Araki, J. Chem. Soc., Perkin Trans. 1, 2000, 825–828;
(b) I. Perez, J. Perez Sestelo and L. A. Sarandeses, Org. Lett.,
1999, 1, 1267; (c) H. C. Clark and A. L. Pickard, J. Organo-
met. Chem., 1967, 8, 427–434.
6 (a) G. Rosini, R. Ballini, P. Sorrenti and M. Petrini, Syn-
thesis, 1984, 607–608; (b) J.-M. Melot, F. Texier-Boullet and
A. Foucaud, Tetrahedron Lett., 1986, 27, 493–496;
(c) Y. J. Chen and W. Y. Lin, Tetrahedron, 1993, 49, 10263– 16 General Procedure for the reaction of indium nitronates
10270; (d) T. Kolter, G. van Echten-Deckert and
K. Sandhoff, Tetrahedron, 1994, 50, 13425–13432;
(e) R. Ballini, G. Bosica and P. Forconi, Tetrahedron, 1996,
52, 1677–1684; (f) V. J. Bulbule, V. H. Deshpande, S. Velu,
A. Sudalai, S. Sivasankar and V. T. Sathe, Tetrahedron, 1999,
55, 9325–9332; (g) K. Akutu, H. Kabashima, T. Seki and
and aldehydes. n-Butyllithium (1.6 M in hexane, 2.0 mL,
3.1 mmol) was added to a stirred solution of anhydrous
indium trichloride (221 mg, 1.0 mmol) and nitroalkane 1
(3.0 mmol) in THF (4 mL) at −78 °C. The mixture was
stirred for 10 min, after which time aldehyde 2 (2.0 mmol)
was added. The reaction mixture was warmed to room
8596 | Org. Biomol. Chem., 2014, 12, 8593–8597
This journal is © The Royal Society of Chemistry 2014