Journal of Chemical & Engineering Data
ARTICLE
’ AUTHOR INFORMATION
(16) Price, W. Pulse-Field Gradient Nuclear Magnetic Resonance
as a Tool for Studying Translational Diffusion: Part 1. Basic Theory,
Concepts Magn. Reson. 1997, 9, 299–336.
(17) Price, W. S. Pulse-field gradient nuclear magnetic resonance as a
tool for studying translational diffusion. II. Experimental aspects. Con-
cepts Magn. Reson. 1998, 10, 197–237.
Corresponding Author
*Phone: +1 (785) 864-4947. Fax: +1 (785) 864-4967. E-mail:
Funding Sources
(18) Schleicher, J. C., Kinetics and Solvent Effects in the Synthesis of
This work was supported by the U.S. National Science Founda-
tion (CBET-0731244). A.M.S. appreciates the support of the
DuPont Young Professor Award.
Ionic Liquids. MS Thesis, 2007.
(19) Harris, K. R. Temperature and density dependence of the self-
diffusion coefficient of n-hexane from 223 to 333 K and up to 400 MPa.
J. Chem. Soc., Faraday Trans. 1982, 78 (7), 2265–2274.
(20) Krynicki, K.; Green, C. D.; Sawyer, D. W. Pressure and
temperature dependence of self-diffusion in water. Faraday Discuss.
Chem. Soc. 1978, 66, 199–208.
(21) Kerssebaum, R. DOSY and diffusion by NMR. Bruker BioSpin,
Rheinstetten, Germany 2002, 3–23.
(22) Tokuda, H.; Ishii, K.; Susan, M.; Tsuzuki, S.; Hayamizu, K.;
Watanabe, M. Physicochemical Properties and Structures of Room-
Temperature Ionic Liquids. 3. Variation of Cationic Structures. J. Phys.
Chem. B 2006, 110 (6), 2833–2839.
’ ACKNOWLEDGMENT
Dr. David van derVelde (now at Caltech) is thanked for NMR
method development. Prof. Jerzy Petera of the Technical Uni-
versity of yodꢀz, Poland is thanked for helpful discussions.
(23) Crosthwaite, J. M.; Muldoon, M. J.; Dixon, J. K.; Anderson, J. L.;
Brennecke, J. F. Phase transition and decomposition temperatures, heat
capacities and viscosities of pyridinium ionic liquids. J. Chem. Thermo-
dyn. 2005, 37 (6), 559–568.
’ REFERENCES
(1) Holbrey, J. D.; Seddon, K. R. Ionic Liquids. Clean Prod. Proc.
1999, 1 (4), 223–236.
(2) Zhao, H.; Xia, S.; Ma, P. Use of ionic liquids as ’green’ solvents
for extractions. J. Chem. Technol. Biotechnol. 2005, 80 (10), 1089–1096.
(3) Roettger, D.; Nierlich, F.; Krissmann, J.; Wasserscheid, P.; Keim,
W., Method for separation of substances by extraction or by washing
them with ionic liquids. U.S. Patent No. 7,304,200, 2007.
(4) Smith, R. S.; Herrera, P. S.; Reynolds, J. S.; Krzywicki, A. Use of
ionic liquids to separate diolefins. U.S. Patent App. 10/308,307, 2002.
(5) Pandey, S. Analytical applications of room-temperature ionic
liquids: A review of recent efforts. Anal. Chim. Acta 2006, 556 (1),
38–45.
(24) Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M. A. B. H.;
Watanabe, M. Physicochemical Properties and Structures of Room
Temperature Ionic Liquids. 2. Variation of Alkyl Chain Length in Im-
idazolium Cation. J. Phys. Chem. B 2005, 109 (13), 6103–6110.
(25) Widegren, J. A.; Magee, J. W. Density, Viscosity, Speed of
Sound, and Electrolytic Conductivity for the Ionic Liquid 1-Hexyl-3-
methylimidazolium Bis (trifluoromethylsulfonyl) imide and Its Mixtures
with Water. J. Chem. Eng. Data 2007, 52 (6), 2331–2338.
(26) Crossley, J. Dielectric relaxation of l-alkenes. J. Chem. Phys.
1973, 58 (12), 5315–5318.
(6) Ahosseini, A.; Ren, W.; Scurto, A. M. Homogeneous Catalysis in
Biphasic Ionic Liquids/CO2 Systems. Chem. Today 2007, 25 (2), 40–42.
(7) Ahosseini, A.; Ren, W.; Scurto, A. M. Understanding Biphasic
Ionic Liquid/CO2 Systems for Homogeneous Catalysis: Hydroformyla-
tion. Ind. Eng. Chem. Res. 2009, 95–101.
(27) Naziev, Y. Study of the dynamic viscosity of 1-heptene and
1-octene at high pressures. Chem. Technol. 1976, 28 (12), 736–738.
(28) Wright, F. J. Influence of Temperature on Viscosity of Non-
associated Liquids. J. Chem. Eng. Data 1961, 6 (3), 454–456.
(29) Yarranton, H. W.; Satyro, M. A. Expanded Fluid-Based Visc-
osity Correlation for Hydrocarbons. Ind. Eng. Chem. Res. 2009, 48 (7),
3640–3648.
(8) Ahosseini, A.; Ren, W.; Scurto, A. M. Hydrogenation in biphasic
ionic liquid/CO2 systems. In Gas Expanded Liquids and Near-Critical
Media: Green Chemistry and Engineering; Hutchenson, K., Scurto, A. M.,
Subramaniam, B., Eds.; ACS Symposium Series 1006; American Chemi-
cal Society: Washington, DC, 2009; Chapter 11, pp 218ꢀ234.
(9) Gangu, S. A.; Weatherley, L. R.; Scurto, A. M. Whole-Cell Bio-
catalysis with Ionic Liquids. Curr. Org. Chem. 2009, 13 (13), 1242–1258.
(10) Fehꢁer, E.; Illeovꢁa, V.; Kelemen-Horvꢁath, I.; Bꢁelafi-Bakꢁo, K.;
(30) Yaws, C. L. Handbook of Viscosity; Gulf Publishing Company:
Houston, TX, 1995; Vol. 3, p 52.
(31) Fitchett, B. D.; Knepp, T. N.; Conboy, J. C. 1-Alkyl-3-methy-
limidazolium Bis(perfluoroalkylsulfonyl)imide Water-Immiscible Ionic
Liquids. J. Electrochem. Soc. 2004, 151 (7), E219–E225.
(32) Jacquemin, J.; Husson, P.; Padua, A. A. H.; Majer, V. Density
and viscosity of serveral pure and water-saturated ionic liquids. Green
Chem. 2006, 8, 172–180.
(33) Seddon, K. R.; Stark, A.; Torres, M. J. Influence of chloride,
water, and organic solvents on the physical properties of ionic liquids.
Pure Appl. Chem. 2000, 72 (12), 2275–2287.
(34) Wagner, M.; Stanga, O.; Schroer, W. Critical viscosity near the
liquid liquid phase transition in the solution of the ionic liquid 1-methyl-
3-hexylimidazolium tetrafluoroborate in 1-pentanol. Phys. Chem. Chem.
Phys. 2004, 6 (8), 1750–1757.
ꢂ
Polakovic, M. L. G. Enzymatic production of isoamyl acetate in an ionic
liquid-alcohol biphasic system. J. Mol. Catal. B. 2008, 50, 28–32.
(11) Ahosseini, A.; Sensenich, B.; Weatherley, L.; Scurto, A. Phase
Equilibrium, Volumetric, and Interfacial Properties of the Ionic Liquid,
1-Hexyl-3-Methyl-Imidazolium Bis(Trifluoromethylsulfonyl)amide and
1-Octene. J. Chem. Eng. Data 2010, 55 (4), 1611–1617.
(12) Anon., Thermodynamics of Ionic Liquids, Ionic Liquid Mix-
tures, and the Development of Standardized Systems. Chem. Int. 2005,
27, (5), 22-23.
(35) Andreatta, A.; Arce, A.; Rodil, E.; Soto, A. Physical and excess
properteis of (methylacetate + methanol + 1-octyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)amide)anditsbinarymixturesatT= 298.15 K
and atmospheric pressure. J. Chem. Thermodyn. 2009, 41, 1317–1323.
(36) Andreatta, A.; Arce, A.; Rodil, E.; Soto, A. Physical properties of
binary and ternary mixtures of ethylacetate, ethanol and 1-octyl-3-
methylimidazolium bis(trifluoromethylsulfonyl)amide) at 298.15 K.
J. Chem. Eng. Data 2009, 54, 1022–1025.
(37) Wang, J.; Zhu, A.; Zhuo, K. Excess molar volumes and excess
logarithm viscosities for binary mixtures of the ionic liquid 1-butyl-3-
methylimidazolium hexafluorophosphate withsome organic compounds.
J. Solution Chem. 2005, 34, 585–596.
(13) Marsh, K. N.; Brennecke, J. F.; Chirico, R. D.; Frenkel, M.;
Heintz, A.; Magee, J. W.; Peters, C. J.; Rebelo, L. P. N.; Seddon, K. R.
Thermodynamic and thermophysical properties of the reference ionic
liquid: 1-Hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]-
amide (including mixtures). Part 1. Experimental methods and results
(IUPAC Technical Report). Pure Appl. Chem. 2009, 81 (5), 781–790.
(14) Nockemann, P.; Binnemans, K.; Driesen, K. Purification of
imidazolium ionic liquids for spectroscopic applications. Chem. Phys.
Lett. 2005, 415 (1ꢀ3), 131–136.
(15) Bonh^ote, P.; Dias, A. P.; Papageorgiou, N.; Kalyanasundaram,
K.; Gratzel, M. Hydrophobic, highly conductive ambient-temperature
molten salts. Inorg. Chem. 1996, 35 (5), 1168–1178.
3720
dx.doi.org/10.1021/je1009224 |J. Chem. Eng. Data 2011, 56, 3715–3721