2
004 Nakamura et al.
Macromolecules, Vol. 35, No. 6, 2002
one unpaired electron is stabilized in ca. 3000 carbons
in the trans-polyacetylene, although, inversely, one
electron is stabilized in ca. 30 000 carbons in the cis-
(4) Tabata, M.; Sone, T.; Sadahiro, Y.; Yokota, K.; Nozaki, Y. J .
Polym. Sci., Part A: Polym. Chem. 1998, 36, 217.
(5) Tabata, M.; Sone, T.; Sadahiro, Y.; Yokota, K. Macromol.
Chem. Phys. 1998, 199, 1161.
2
6
polyacetylene. This indicates that the spin concentra-
tions of the P2ET polymer observed before and after the
illumination are clearly comparable not to that of cis
but that of trans in the nonsubstituted polyacetylene.
Thus, the ESR data clearly evidenced that the initial
and irradiated P2ET polymer can be ascribed to the cis-
transoid and trans-transoid polymers, respectively,
although the reason why the cis P2ET polymer can
stabilize such large amount of radical spins remains to
be examined.
(6) D’Amato, R.; Sone, T.; Tabata, M.; Sadahiro, Y.; Russo, M.
V.; Furlani, A. Macromolecules 1998, 31, 8660.
(7) Tabata, M.; Sadahiro, Y.; Nozaki, Y.; Inaba, Y.; Yokota, K.
Macromolecules 1996, 29, 6673.
(8) Tabata, M.; Inaba, Y.; Yokota, K.; Nozaki, Y. J . Macromol.
Sci., Pure Appl. Chem. 1994, A31, 465.
(9) Tabata, M.; Yang, W.; Yokota, K. Polym. J . 1990, 22, 1105.
(
10) Yang, W.; Tabata, M.; Kobayashi, S.; Yokota, K.; Shimizu,
A. Polym. J . 1991, 23, 1135.
(11) Tabata, M.; Yang, W.; Yokota, K. J . Polym. Sci., Polym. Chem.
Ed. 1994, 32, 1113.
(
(
(
12) Tabata, M.; Sadahiro, Y.; Sone, T.; Inaba, Y.; Yokota, K.
Koubunshi Ronbunsyuu (in J apanese) 1999, 56, 330.
13) Masuda, T.; Isobe, E.; Higashimura, T.; Takada, K. J . Am.
Chem. Soc. 1983, 105, 7473.
14) (a) Stockheim, T. A., Ed. Handbook of Conducting Polymers;
Dekker: New York, 1986; Vols. 1 and 2. (b) Ferraro, J . R.,
Williams, J . M., Eds. Introduction to Synthetic Electrical
Conductors; Academic Press: New York, 1987. (c) Salomone,
J . C., Ed.Polymeric Materials; CRC Press: New York, 1996;
Vol. 8, p 6481.
15) Korshak, Y. V.; Medvedeva, T. V.; Ovchinnikov, A. A.; Spector,
V. Nature (London) 1987, 32, 370.
16) Tabata, M.; Nozaki, Y.; Yang, W.; Yokota, K.; Tazuke, Y. Proc.
J pn. Acad. 1995, Ser. B71, 219.
(17) (a) Tabata, M.; Sone, T.; Yokota, K.; Wada, T.; Sasabe, H.
Nonlinear Opt. 1999, 22, 341. (b) Tada, K.; Sawada, H.;
Kyokane, J .; Yoshino, K. J pn. J . Appl. Phys. 1995, 34, L1083.
18) Furlani, A.; Iucci, G.; Russo, M. V.; Bearzotti, A.; D’Amico,
A. Sens. Actuators B 1992, 13, 447.
(19) Takahashi, S.; Kuroyama, Y.; Sonogashira, K.; Hagihara, N.
Con clu sion
2
-Ethynylthiophene was successfully polymerized us-
ing a [Rh(norbornadiene)Cl]2 catalyst in the presence
of triethylamine or ethanol as the polymerization sol-
vent to produce the poly(2-ethynylthiophene), P2ET,
polymers. The resulting polyacetylenes were character-
1
ized in detail using H NMR, solution and film UV-
(
vis, and ESR methods. The difference in the color of
their polymers prepared using TEA or EtOH solvent
was suggested in terms of the difference in the degree
of the aggregation of the polymer chains. Photoinduced
cis-to-trans isomerization of the pristine polymer was
newly found to occur when the polymer was irradiated
using light of 320-470 nm under vacuum for 5 h.
The obtained trans isomer was also studied in detail
using ESR and UV-vis spectra. The data showed that
the distorted trans conjugation sequences were formed
in the solid phase where a large number of radicals
produced by the rotational scission of the cis CdC bonds
is stabilized.
(
(
Synthesis 1980, 627.
20) Natta, G.; Mazzanti, G.; Corradini, P. J . Rend. Accad. Naz.
Lincei 1958, 25, 3.
21) Kunzler, J .; Percec, V. J . Polym. Sci., Polym. Chem. Ed. 1990,
(
(
(
2
8 1221 and reference cited therein.
22) Tabata, M.; Kobayashi, S.; Sadahiro, Y.; Nozaki, Y.; Yokota,
Studies on the reason why the P2ET polymer can
stabilize such large amount of π radicals is in progress
in our laboratory at present together with another
ethynylthiophene polymer, and the results will be
published elsewhere soon.
K.; Yang, W. J . Macromol. Sci., Pure Appl. Chem. 1997, A34,
6
41.
(
23) Tabata, M.; Sadahiro, Y.; Yokota, K.; Kobayashi, S. J pn. J .
Appl. Phys. 1996, 35, 5411.
24) Pshezhetskii, S. Y.; Kotov, A. G.; Milincuk, V. A.; Rozinskii,
V. I.; Tupikov, V. I. ESR of Free Radicals in Radiation
Chemistry; Wiley: New York, 1972; p 22.
(
Refer en ces a n d Notes
(25) Tabata, M.; Lund, A. Chem. Phys. 1983, 75, 379.
(
(
(
26) Shirakawa, H.; Ito, T.; Ikeda, S. Macromol. Chem. 1978, 179,
(
1) Tabata, M.; Sone, T.; Sadahiro, Y. Macromol. Chem. Phys.
999, 200, 265.
1565.
1
27) Su, W. P.; Schrefer, J . R.; Heeger, A. J . Phys. Rev. Lett. 1979,
(
2) Tabata, M.; Takamura, H.; Yokota, K.; Nozaki, Y.; Hoshina,
4
2, 1698.
28) Harada, I.; Tasumi, M.; Shirakawa, H.; Ikeda, S. Chem. Lett.
978, 1411.
T.; Minakawa, H.; Kodaira, K. Macromolecules 1994, 27,
6
234.
1
(
3) Tabata, M.; Tanaka, Y.; Sadahiro, Y.; Sone, T.; Yokota, K.;
Miura, I. Macromolecules 1997, 30, 5200.
MA0101198