Inorganic Chemistry
Article
sample revealed its composition to be a moderately crystalline
form of calcite (see Figure S8 in the Supporting Information),
which corresponds to the form of calcium carbonate used
successfully in the bulk MOF syntheses.
Encouraged by the composition of the materials, residual
organic matter, such as proteins, was first removed by
dissolution under basic conditions. After washing and drying
of the samples, the sample was placed in an aqueous solution of
Crystallographic data for 1·H O (CIF)
2
AUTHOR INFORMATION
Present Address
■
*
*
§
Department of Physics, East China Normal University,
Shanghai 200241, People’s Republic of China.
H sq (15 mM) heated to 120 °C for 12 h. After this time, SEM
2
revealed a significantly rougher macropore morphology and the
material (Figure 7C). Powder X-ray diffraction data (Figure S8
in the Supporting Information) confirmed the partial
conversion of the calcium carbonate to a highly crystalline
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Ca(sq)(H O) phase, with the original calcite reflections still
K.S. is grateful to the JSPS Postdoctoral Fellowship Program for
Foreign Researchers and the Australian Research Council for
funding (DE160100306). This work was supported by a Grant-
in-Aid for Scientific Research (15H03785 (S.F.)) from the
MEXT of Japan. iCeMS is supported by the World Premier
International Research Initiative (WPI), MEXT of Japan. The
authors thank CeMI for assistance with electron microscopy,
Dr. M. Nakahama for experimental assistance, and Dr. C. J.
Sumby and Ms. N. Shimanaka for helpful discussions.
2
present following the replication process. Interestingly, longer
reaction times did not lead to full conversion but resulted in the
2
500 μm in length (Figure S9 in the Supporting Information).
The propensity for bulk crystallization to occur suggests the
relatively fast dissolution of the calcium carbonate phase
relative to the formation of the Ca(sq)(H O) phase.
2
Furthermore, a large volume increase of approximately 2.9
2
+
times (based on the density of Ca ions in single-crystal
REFERENCES
structures of calcite and the Ca(sq)(H O) framework) is
2
■
expected to limit the internal space available for crystal growth
within the structures, leading to a preference for the Ca2+ ions
to diffuse out into the bulk solution as the intrinsic porosity is
diminished. Similar tendencies for bulk crystallization to occur
were observed for other types of biomineralized calcium
(1) (a) Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.;
Eddaoudi, M.; Kim, J. Nature 2003, 423, 705−714. (b) Kitagawa, S.;
Kitaura, R.; Noro, S. Angew. Chem., Int. Ed. 2004, 43, 2334−2375.
(
c) Fer
́
ey, G. Chem. Soc. Rev. 2008, 37, 191−214.
(
2) Metal−organic frameworks were the topic of recent special
themed issues in Chem. Rev. and Chem. Soc. Rev.: (a) Zhou, H.-C.;
Long, J. R.; Yaghi, O. M. Chem. Rev. 2012, 112, 673−674. (b) Zhou,
H.-C.; Kitagawa, S. Chem. Soc. Rev. 2014, 43, 5415−5418.
plates (Figure S11 in the Supporting Information), and egg
shells (Figure S12 in the Supporting Information).
(
3) (a) Reboul, J.; Furukawa, S.; Horike, N.; Tsotsalas, M.; Hirai, K.;
Uehara, H.; Kondo, M.; Louvain, N.; Sakata, O.; Kitagawa, S. Nat.
Mater. 2012, 11, 717−723. (b) Stassen, I.; Campagnol, N.; Fransaer, J.;
Vereecken, P.; De Vos, D.; Ameloot, R. CrystEngComm 2013, 15,
CONCLUSIONS AND FUTURE OUTLOOK
■
9
308−9311. (c) Zhan, W.; Kuang, Q.; Zhou, J.; Kong, X.; Xie, Z.;
The foregoing has discussed the use of calcium carbonate as a
Zheng, L. J. Am. Chem. Soc. 2013, 135, 1926−1933. (d) Khaletskaya,
K.; Reboul, J.; Meilikhov, M.; Nakahama, M.; Diring, S.; Tsujimoto,
M.; Isoda, S.; Kim, J.; Kamei, K.; Fischer, R. A.; Kitagawa, S.;
Furukawa, S. J. Am. Chem. Soc. 2013, 135, 10998−11005. (e) Liu, Y.;
Zhang, W.; Li, S.; Cui, C.; Wu, J.; Chen, H.; Huo, F. Chem. Mater.
2014, 26, 1119−1125. (f) Nakahama, M.; Reboul, J.; Kamei, K.;
Kitagawa, S.; Furukawa, S. Chem. Lett. 2014, 43, 1052−1054.
2
+
versatile metal source for the formation of Ca -based MOFs.
Its high reactivity toward organic acids facilitated the formation
of highly crystalline samples of several known frameworks, as
well as a new framework based on the H dhbq linker
2
Ca(dhbq)(H O) , possessing a flexible structure based on the
2
2
reversible adsorption of water molecules. Importantly, the low
solubility of calcium carbonate in the conventional solvents
used in MOF synthesis allowed biomineralized samples to be
partially converted with retention of the original architecture,
offering a new route to hierarchically structuralized MOFs
adopting the morphologies of functional biominerals. Fur-
thermore, this work has further underscored the versatility of
the coordination replication technique, and future studies will
be directed toward the more effective use of the unique
structures of biomineralized materials for the preparation of
functional MOF-based architectures.
(
g) Moitra, N.; Fukumoto, S.; Reboul, J.; Sumida, K.; Zhu, Y.;
Nakanishi, K.; Furukawa, S.; Kitagawa, S.; Kanamori, K. Chem.
Commun. 2015, 51, 3511−3514. (h) Reboul, J.; Yoshida, K.; Furukawa,
S.; Kitagawa, S. CrystEngComm 2015, 17, 323−330. (i) Sumida, K.;
Moitra, N.; Reboul, J.; Fukumoto, S.; Nakanishi, K.; Kanamori, K.;
Furukawa, S.; Kitagawa, S. Chem. Sci. 2015, 6, 5938−5946. (j) Zhao, J.;
Nunn, W. T.; Lemaire, P. C.; Lin, Y.; Dickey, M. D.; Oldham, C. J.;
Walls, H. J.; Peterson, G. W.; Losego, M. D.; Parsons, G. N. J. Am.
Chem. Soc. 2015, 137, 13756−13759.
(4) Fukumoto, S.; Nakanishi, K.; Kanamori, K. New J. Chem. 2015,
39, 6771−6777.
5) Mann, S. Biomineralization: Principles and Concepts in Bioinorganic
(
Materials Chemistry; Oxford University Press: Oxford, U.K., 2001.
ASSOCIATED CONTENT
■
(6) Matsuzaki, T.; Iitaka, Y. Acta Crystallogr., Sect. B: Struct.
*
S
Supporting Information
Crystallogr. Cryst. Chem. 1972, 28, 1977−1981.
(7) (a) Robl, C.; Weiss, A. Mater. Res. Bull. 1987, 22, 373−380.
(b) Horike, S.; Kamitsubo, Y.; Inukai, M.; Fukushima, T.; Umeyama,
D.; Itakura, T.; Kitagawa, S. J. Am. Chem. Soc. 2013, 135, 4612−4615.
(8) Liang, P.-C.; Liu, H.-K.; Yeh, C.-T.; Lin, C.-H.; Zima, V. Cryst.
Full experimental procedures, powder X-ray diffraction
therms, and scanning electron microscopy data (PDF)
Growth Des. 2011, 11, 699−708.
(9) (a) Abrahams, B. F.; Hudson, T. A.; McCormick, L. J.; Robson,
R. Cryst. Growth Des. 2011, 11, 2717−2720. (b) Darago, L. E.; Aubrey,
E
Inorg. Chem. XXXX, XXX, XXX−XXX