G Model
MASPEC151671–7
ARTICLE IN PRESS
L. Zhao et al. / International Journal of Mass Spectrometry xxx (2014) xxx–xxx
7
368
369
Program (No. 2009B08), and the Beijing Municipal Education Com-
mission Science and Technology Project (No. KZ201110005003).
mismatch repair-defective cells in vitro and in xenografts, Int. J. Cancer 85
(2000) 590–596.
[18] R.A. Finch, K. Shyam, P.G. Penketh, A.C. Sartorelli, 1,2-Bis(methylsulfonyl)-1-(2-
chloroethyl)-2-(methylamino)carbonylhydrazine (101 M): a novel sulfonylhy-
drazine prodrug with broad-spectrum antineoplastic activity, Cancer Res. 61
(2001) 3033–3038.
[19] L.-J. Zhao, R.-G. Zhong, Y. Zhen, An ONIOM study on the crosslinked base pairs
in DNA reacted with chloroethylnitrosoureas, J. Theor. Comput. Chem. 6 (2007)
631–639.
[20] W.J. Bodell, Repair of DNA alkylation products formed in 9L cell lines treated
with 1-(2-chloroethyl)-1-nitrosourea, Mutat. Res. 522 (2003) 85–92.
[21] F.-X. Chen, W.J. Bodell, G.-N. Liang, B. Gold, Reaction of N-(2-chloroethyl)-N-
nitrosoureas with DNA: effect of buffers on DNA adduction, cross-linking, and
cytotoxicity, Chem. Res. Toxicol. 9 (1996) 209–214.
[22] W.J. Bodell, DNA alkylation products formed by 1-(2-chloroethyl)-1-
nitrosourea as molecular dosimeters of therapeutic response, J. Neurooncol.
91 (2009) 257–264.
[23] M.T. Hayes, J. Bartley, P.G. Parsons, G.K. Eaglesham, A.S. Prakash, Mechanism
of action of fotemustine, a new chloroethylnitrosourea anticancer agent: evi-
dence for the formation of two DNA-reactive intermediates contributing to
cytotoxicity, Biochemistry 36 (1997) 10646–10654.
[24] P.G. Penketha, K. Shyama, A.C. Sartorelli, Comparison of DNA lesions produced
by tumor-inhibitory 1,2-bis(sulfonyl)hydrazines and chloroethylnitrosoureas,
Biochem. Pharmacol. 59 (2000) 283–291.
[25] H. Ueda-Kawamitsu, T.A. Lawson, P.R. Gwilt, In vitro pharmacokinetics and
pharmacodynamics of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), Biochem.
Pharmacol. 63 (2002) 1209–1218.
[26] W.P. Tong, M.C. Kirk, D.B. Ludlum, Formation of the cross-link 1-[N3-
deoxycytidyl], 2-[N1-deoxyguanosinyl]-ethane in DNA treated with N,Nꢀ-bis
(2-chloroethyl)-N-nitrosourea, Cancer Res. 42 (1982) 3102–3105.
[27] P.L. Fischhaber, A.S. Gall, J.A. Duncan, P.B. Hopkins, Direct demonstration in
synthetic oligonucleotides that N,Nꢀ-bis(2-chloroethyl)-nitrosourea crosslinks
N1 of deoxyguanosine to N3 of deoxycytidine on opposite strands of duplex
DNA, Cancer Res. 59 (1999) 4364–4368.
[28] L.-J. Zhao, T. Ren, B.-Q. Bai, R. Zhang, R.-G. Zhong, Comparative investigations of
deoxyribonucleic acid interstrand crosslinks induced by semustine using flu-
orescence and high performance liquid chromatography-mass spectrometry,
Chinese J. Anal. Chem. 39 (2011) 476–480.
[29] B.-Q. Bai, L.-J. Zhao, R.-G. Zhong, Quantification of meCCNU-induced dG–dC
crosslinks in oligonucleotide duplexes by liquid chromatography/electrospray
ionization tandem mass spectrometry, Rapid Commun. Mass Spectrom. 25
(2011) 2027–2034.
[30] B.-Q. Bai, L.-J. Zhao, R.-G. Zhong, Analysis of deoxyribonucleic acid interstrand
crosslinks induced by nitrosourea with high performance liquid chromatogra-
phy–electrospray ionization tandem mass spectrometry, Chinese J. Anal. Chem.
38 (2010) 532–536.
[31] L.-J. Zhao, X.-Y. Ma, R.-G. Zhong, A density functional theory investigation on the
formation mechanisms of DNA interstrand crosslinks induced by chloroethyl-
nitrosoureas, Int. J. Quantum Chem. 113 (2012) 1299–1306.
[32] L.-J. Zhao, X.-Y. Ma, R.-G. Zhong, Comparative theoretical investigation of the
formation of DNA interstrand crosslinks induced by two kinds of N-nitroso
compounds: nitrosoureas and nitrosamines, J. Phys. Org. Chem. 25 (2012)
1153–1167.
[33] W.J. Bodell, K. Pongracz, Chemical synthesis and detection of the cross-link
1-[N3-(2ꢀ-deoxycytidyl)]-2-[N1-(2ꢀ-deoxyguanosinyl)]ethane in DNA reacted
with l-(2-Chloroethyl)-l-nitrosoure, Chem. Res. Toxicol. 6 (1993) 434–438.
[34] N. Morikawa, T. Mori, T. Abe, H. Kawashima, M. Takeyama, S. Hori, Pharma-
cokinetics of cytosine arabinoside, methotrexate, nimustine and valproic acid
in cerebrospinal fluid during cerebrospinal fluid perfusion chemotherapy, Biol.
Pharm. Bull. 23 (2000) 784–787.
[35] B.H. Gordon, R.P. Richards, M.P. Hiley, A.J. Gray, R.M.J. Ings, D.B. Campbell, A
new method for the measurement of nitrosoureas in plasma: an HPLC pro-
cedure for the measurement of fotemustine kinetics, Xenobiotica 19 (1989)
329–339.
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
370
Appendix A. Supplementary data
371
372
Supplementary data associated with this article can be found, in
373
References
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
[1] T.C.A. Johannessen, R. Bjerkvig, B.B. Tysnes, DNA repair and cancer stem-like
cells: potential partners in glioma drug resistance, Cancer Treat. Rev. 34 (2008)
558–567.
[2] P. Merle, D. Morvan, D. Caillaud, A. Demidem, Chemotherapy-induced
bystander effect in response to several chloroethylnitrosoureas: an origin inde-
pendent of DNA damage, Anticancer Res. 28 (2008) 21–27.
[3] M.D. Bacolod, S.P. Johnson, A.E. Pegg, M.E. Dolan, R.C. Moschel, N.S. Bullock,
Q.M. Fang, O.M. Colvin, P. Modrich, D.D. Bigner, H.S. Friedman, Brain tumor
cell lines resistant to O6-benzylguanine/1,3-bis(2-chloroethyl)-1-nitrosourea
chemotherapy have O6-alkylguanine-DNA alkyltransferase mutations, Mol.
Cancer Ther. 3 (2004) 1127–1135.
[4] T.-T. Liu, L.-J. Zhao, R.-G. Zhong, DFT investigations of phosphotriesters hydrol-
ysis in aqueous solution: a model for DNA single strand scission induced by
N-nitrosoureas, J. Mol. Model. 19 (2013) 647–659.
[5] T. Walbert, M.R. Gilbert, M.D. Groves, V.K. Puduvalli, W.K.A. Yung, C.A. Conrad,
G.C. Bobustuc, H. Colman, S.H. Hsu, B.N. Bekele, W. Qiao, V.A. Levin, Combination
of 6-thioguanine, capecitabine, and celecoxib with temozolomide or lomustine
for recurrent high-grade glioma, J. Neurooncol. 102 (2011) 273–280.
[6] S. Watanabe, S. Sato, S. Nagase, S. Ohkuma, Chemotherapeutic choice of ran-
imustine or nimustine on the basis of regional polyamine levels in rat brain,
Methods Find. Exp. Clin. Pharmacol. 30 (2008) 115–120.
[7] A.D. Bolzan, M.S. Bianchi, Genotoxicity of streptozotocin, Mutat. Res. 512 (2002)
121–134.
[8] C. Jacquillat, D. Khayat, P. Banzet, M. Weil, P. Fumoleau, M.F. Avril, M. Namer,
J. Bonneterre, P. Kerbrat, J.J. Bonerandi, R. Bugat, P. Montcuquet, D. Cupissol, R.
Lauvin, C. Vilmer, C. Prache, J.P. Bizzari, Final report of the French multicenter
phase II study of the nitrosourea fotemustine in 153 evaluable patients with dis-
seminated malignant melanoma including patients with cerebral metastases,
Cancer 66 (1990) 1873–1878.
[9] D. Khayat, B. Giroux, J. Berille, V. Cour, B. Gerard, M. Sarkany, P. Bertrand, J.P.
Bizzari, Fotemustine in the treatment of brain primary tumors and metastases,
Cancer Investig. 12 (1994) 414–420.
[10] A. Daponte, S. Signoriello, L. Maiorino, B. Massidda, E. Simeone, A.M. Grimaldi,
C. Caraco, G. Palmieri, A. Cossu, G. Botti, A. Petrillo, S. Lastoria, E. Cavalcanti, P.
Aprea, N. Mozzillo, C. Gallo, G. Comella, P.A. Ascierto, Phase III randomized study
of fotemustine and dacarbazine versus dacarbazine with or without interferon-
␣ in advanced malignant melanoma, J. Transl. Med. 11 (2003) 38.
[11] N. Ni, T. Sanghvi, S.H. Yalkowsky, Stabilization and preformulation of anticancer
drug-SarCNU, Int. J. Pharm. 1/2 (2002) 257–264.
[12] S. Sekido, K. Ninomiya, M. Iwasaki, Biologic activity of MCNU: a new antitumor
agent, Cancer Treat. Rep. 63 (1979) 961–970.
[13] Y. Takaue, T. Watanabe, Y. Hoshi, T. Abe, K. Matsunaga, S.I. Saito, A. Hirao,
Y. Kawano, T. Ninomiya, Y. Kuroda, T. Koyama, T. Suzue, T. Shimokawa, H.
Uchiyama, A. Watanabe, T. Matsushita, A. Kikuta, A. Yokobayashi, R. Murakami,
A. Manabe, R. Hosoya, M. Ohira, T. Fujimoto, Effectiveness of high-dose MCNU
therapy and hematopoietic stem cell autografts treatment of childhood acute
leukemia/lymphoma with high-risk features, Cancer 67 (1991) 1830–1837.
[14] L.F.Z. Batista, W.P. Roos, M. Christmann, C.F.M. Menck, B. Kaina, Differential
sensitivity of malignant glioma cells to methylating and chloroethylating anti-
cancer drugs: p53 determines the switch by regulating xpc, ddb2, and DNA
double-strand breaks, Cancer Res. 67 (2007) 11886–11895.
[15] T. Yamaguchi, H. Kanemitsu, S. Yamamoto, M. Komatsu, H. Uemura, K. Tamura,
T. Shirai, N,Nꢀ-bis(2-chloroethyl)-N-nitrosourea (BCNU)-induced apoptosis of
neural progenitor cells in the developing fetal rat brain, J. Toxicol. Pathol. 23
(2010) 25–30.
[16] P.G. Penketh, R.P. Baumann, K. Ishiguro, K. Shyam, H.A. Seow, A.C. Sartorelli,
Lethality to leukemia cell lines of DNA interstrand cross-links generated by
cloretazine derived alkylating species, Leuk. Res. 32 (2008) 1546–1553.
[17] S. Fiumicino, S. Martinelli, C. Colussi, G. Aquilina, C. Leonetti, M. Crescenzi,
M. Bignami, Sensitivity to DNA cross-linking chemotherapeutic agents in
[36] J.E.A. Wolff, S. Berrak, S.E.K. Webb, M. Zhang, Nitrosourea efficacy in high-grade
glioma: a survival gain analysis summarizing 504 cohorts with 24193 patients,
J. Neurooncol. 88 (2008) 57–63.
[37] T. Aida, W.J. Bodell, Cellular-resistance to chloroethylnitrosoureas, nitrogen
mustard, and cis-diamminedichloroplatinum(II) in human glial-derived cell-
lines, Cancer Res. 47 (1987) 1361–1366.
[38] W.J. Bodell, M. Cerosa, T. Aida, M.S. Berger, M.L. Rosenblu, Investigation of resis-
tance to DNA cross-linking agents in 9L cell lines with different sensitivities to
chloroethylnitrosoureas, Cancer Res. 45 (1985) 3460–3464.