ACS Medicinal Chemistry Letters
Letter
Finally, the pharmacokinetic profile of 5o was evaluated in
rats. The time-course of 5o in plasma following a single oral
dose (100 mg/kg) to rats is shown in Figure S2 (Supporting
Information), and the key pharmacokinetic parameters were
summarized in Table 3. Overall, it was shown that 5o was orally
ABBREVIATIONS
■
HCV, hepatitis C virus; Peg-IFN, pegylated interferon-α; SVR,
sustained virological response; DAA, direct acting antivirals;
ISG, IFN-stimulated genes; SAR, structure−activity relation-
ship; ISRE, IFN-stimulated response element; HSPGs, heparan
sulfate proteoglycans
a
Table 3. Pharmacokinetic Parameters of 5o
REFERENCES
pharmacokinetic parameters
compound 5o
■
(1) Choo, Q. L.; Kuo, G.; Weiner, A. J.; Overby, L. R.; Bradley, D.
W.; Houghton, M. Isolation of a cDNA clone derived from a blood
borne non-A, non-B viral hepatitis genome. Science 1989, 244, 359−
362.
(2) Negro, F.; Alberti, A. The global health burden of hepatitis C
virus infection. Liver Int. 2011, 31, 1−3.
Tmax (h)
2.17 0.36
2.05 0.26
2.93 0.60
18.98 2.49
19.12 2.64
Cmax (μM)
T1/2 (h)
AUC0−24 h (μM·h)
AUC0‑∞ (μM·h)
a
The data represent mean SD (n = 5). Tmax, time to reach maximal
plasma concentration; Cmax, maximal plasma concentration; T1/2
elimination half-life; AUC0−24, area under the curve of plasma
concentration from time 0 to 24 h; AUC0‑∞, area under the curve
of plasma concentration from time 0 to infinity.
(3) Di Bisceglie, A. M. Natural history of hepatitis C: its impact on
clinical management. Hepatology 2000, 31, 1014−1018.
(4) Zeuzem, S. Interferon-based therapy for chronic hepatitis C:
current and future perspectives. Nat. Clin. Pract. Gastroenterol. Hepatol.
2008, 5, 610−622.
,
(5) Manns, M. P.; Wedemeyer, H.; Cornberg, M. Treating viral
hepatitis C: efficacy, side effects, and complications. Gut 2006, 55,
1350−1359.
(6) Kwong, A. D. The HCV revolution did not happen overnight.
ACS Med. Chem. Lett. 2014, 5, 214−220.
available and had promising pharmacokinetic properties (Tmax
=
2.17 0.36 h, T1/2 = 2.93 0.60 h, Cmax = 2.05 0.26 μM,
AUC0−24h = 18.98 2.49 μM·h).25
(7) Ghany, M. G.; Strader, D. B.; Thomas, D. L.; Seeff, L. B.
Diagnosis, management, and treatment of hepatitis C: an update.
Hepatology 2009, 49, 1335−1374.
In conclusion, with the known small molecule IFN-like agent
RO8191 as lead, we have designed and synthesized a series of
imidazo[1,2-α][1,8]naphthyridine derivatives, some of which
exhibited significant anti-HCV activity (EC50 = 0.02−0.1 μM).
Further investigations revealed that these compounds exerted
their anti-HCV effect in the viral entry stage, which is distinct
from that of RO8191. While the majority of the recently
approved DAAs are either protease or polymerase inhibitors,
the development of HCV entry inhibitor represents an
emerging research field.26 In this context, our work provides
a promising entry point for the development of HCV entry
inhibitor. Efforts on identifying the underlying biological target
of these anti-HCV agents are underway in our laboratory.
(8) Aman, W.; Mousa, S.; Shiha, S.; Mousa, S. A. Current status and
future directions in the management of chronic hepatitis C. Virol. J.
2012, 9, 57−67.
(9) Asselah, T.; Marcellin, P. New direct-acting antivirals’
combination for the treatment of chronic hepatitis C. Liver Int.
2011, 31, 68−77.
(10) Welsch, C.; Jesudian, A.; Zeuzem, S.; Jacobson, I. New direct-
acting antiviral agents for the treatment of hepatitis C virus infection
and perspectives. Gut 2012, 61, 36−46.
(11) Wilby, K. J.; Partovi, N.; Ford, J. A.; Greanya, E.; Yoshida, E. M.
Review of boceprevir and telaprevir for the treatment of chronic
hepatitis C. Can. J. Gastroenterol. 2012, 26, 205−210.
(12) Sofia, M. J.; Chang, W.; Furman, P. A.; Mosley, R. T.; Ross, B. S.
Nucleoside, nuceotide, and non-nucleoside inhibitors of hepatitis C
virus NS5B RNA-dependent RNA polymerase. J. Med. Chem. 2012, 55,
2481−2531.
(13) Konishi, H.; Okamoto, K.; Ohmori, Y.; Yoshino, H.; Ohmori,
H.; Ashihara, M.; Hirata, Y.; Ohta, A.; Sakamoto, H.; Hada, N.;
Katsume, A.; Kohara, M.; Morikawa, K.; Tsukuda, T.; Shimma, N.;
Foster, G. R.; Alazawi, W.; Aoki, Y.; Arisawa, M.; Sudoh, M. An orally
available, small-molecule interferon inhibits viral replication. Sci. Rep.
2012, 2, 259−267.
(14) Stedman, C. A. M. Current prospects for interferon-free
treatment of hepatitis C in 2012. J. Gastroenterol. Hepatol. 2013, 28,
38−45.
(15) Banka, A. L.; Botyanszki, J.; Burroughs, E. G.; Catalano, J. G.;
Chern, W. H.; Dickson, H. D.; Gartland, M. J.; Hamatake, R.; Hofland,
H.; Keicher, J. D.; Moore, C. B.; Shotwell, J. B.; Tallant, M. D.;
Therrien, J. P. Compounds and methods for enhancing innate immune
responses. WO2013059559A2, 2013.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
Experimental procedures, characterization data, and
NMR-mass spectrum for all new compounds (PDF)
AUTHOR INFORMATION
■
Corresponding Authors
Author Contributions
(16) Huang, S. D.; Qing, J.; Wang, S.; Wang, H.; Zhang, L. Q.; Tang,
Y. F. Design and synthesis of imidazo[1,2-α][1,8]-naphthyridine
derivatives as anti-HCV agents via direct C−H arylation. Org. Biomol.
Chem. 2014, 12, 2344−2348.
∥These authors (H.W. and S.W.) contributed equally to this
work. All authors have given approval to the final version of the
manuscript.
(17) Unpublished results. For details, see Table S-1 (SI).
Funding
́
(18) Varadi, L.; Gray, M.; Groundwater, P. W.; Hall, A. J.; James, A.
We gratefully acknowledge the financial supports from the
NSFC (21272133, 81470839) and Beijing Natural Science
Foundation (2132037).
L.; Orenga, S.; Perry, J. D.; Anderson, R. J. Synthesis and evaluation of
fluorogenic 2-amino-1,8-naphthyridine derivatives for the detection of
bacteria. Org. Biomol. Chem. 2010, 10, 2578−2589.
Notes
(19) Aginagalde, M.; Vara, Y.; Arrieta, A.; Zangi, R.; Cebolla, V. L.;
The authors declare no competing financial interest.
Delgado-Camon
́
, A.; Cossío, F. P. Tandem [8 + 2] cycloaddition-[2 +
D
ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX