6002
M. Petrini, E. Torregiani / Tetrahedron Letters 46 (2005) 5999–6003
9. Electron-rich aromatics and methyl aryl ketones can be
used as nucleophiles for such additions but only with
amido compounds 1 obtained from non-enolisable alde-
hydes: (a) Xu, L.-W.; Xia, C.-G.; Li, L. J. Org. Chem.
2004, 68, 8482–8484; (b) Bensel, N.; Pevere, V.; Desmur,
J. R.; Wagner, A.; Mioskowski, C. Tetrahedron Lett. 1999,
40, 879–882.
10. (a) Engberts, J. B. F. N.; Strating, J. Rec. Trav. Chim.
Pays-Bas 1965, 84, 942–950; (b) Pearson, W. H.; Lind-
beck, A. C.; Kampf, J. W. J. Am. Chem. Soc. 1993, 115,
2622–2636.
In conclusion, a-amido sulfones 6 can be easily con-
verted into the corresponding N-acyliminium ions 7 by
reaction with TiCl4 at À78 °C. These reactive iminium
ions can add weak nucleophiles such as allyltrimethyl-
silane 8a, silyl ketene acetal 8e or electron-rich aromatics
(anisole 8b and thiophene 8c) giving the corresponding
adducts 9–12. The same procedure can be extended to
bisamido sulfones 13 and 15 that in usual conditions
lead to bis adducts 14 and 16 and 17–20.
11. For some very recent applications see: (a) Mennen, S. M.;
Gipson, J. D.; Kim, Y. R.; Miller, S. J. J. Am. Chem. Soc.
2005, 127, 1654–1655; (b) Zhang, H.-L.; Liu, H.; Cui, X.;
Mi, A.-Q.; Jiang, Y.-Z.; Gong, L.-Z. Synlett 2005, 615–
Acknowledgements
Financial support from University of Camerino
`
`
618; (c) Co
ˆte´, A.; Boezio, A. A.; Charette, A. B. Proc.
(National Project ꢀSintesi e Reattivita-attivita di Sistemi
Insaturi Funzionalizzatiꢁ) is gratefully acknowledged.
Natl. Acad. Sci. 2004, 101, 5405–5410; (d) Shiraishi, Y.;
Yamauchi, H.; Takamura, T.; Kinoshita, H. Bull. Chem.
Soc. Jpn. 2004, 77, 2219–2229; (e) Zawadzki, S.; Zwierzak,
A. Tetrahedron Lett. 2004, 45, 8505–8506; (f) Zhao, Y.;
Ma, Z.; Zhang, X.; Zou, Y.; Jin, X.; Wang, J. Angew.
Chem., Int. Ed. 2004, 43, 5977–5980; (g) Banphavichit, V.;
Chaleawlertumpon, S.; Bhanthumnavin, W.; Vilaivan, T.
Synth. Commun. 2004, 34, 3147–3160; (h) Giri, N.; Petrini,
M.; Profeta, R. J. Org. Chem. 2004, 69, 7303–7308; (i)
Pesenti, C.; Arnone, A.; Arosio, P.; Frigerio, M.; Meille,
S. V.; Panzeri, W.; Viani, F.; Zanda, M. Tetrahedron Lett.
2004, 45, 5125–5129; (j) Frantz, D. E.; Morency, L.;
Soheili, A.; Murry, J. A.; Grabowski, E. J. J.; Tillyer, R.
D. Org. Lett. 2004, 6, 843–846; (k) Gizeki, P.; Youcef, R.
A.; Poulard, C.; Dhal, R.; Dujardin, G. Tetrahedron Lett.
2004, 45, 9589–9592.
References and notes
1. Review: (a) Kobayashi, S.; Ishitani, H. Chem. Rev. 1999,
99, 1069–1094; (b) Bloch, R. Chem. Rev. 1998, 98, 1407–
1438; (c) Enders, D.; Reinhold, U. Tetrahedron: Asymme-
try 1997, 8, 1895–1946; (d) Volkmann, R. A. In Compre-
hensive Organic Synthesis; Schreiber, S. L., Ed.;
Pergamon: Oxford, 1991; Vol. 1, pp 355–396.
2. (a) Lewis Acids in Organic Synthesis; Yamamoto, H., Ed.;
Wiley-VCH: Weinheim, 2000; Vols. 1 and 2; (b) Ollevier,
T.; Nadeau, E. J. Org. Chem. 2004, 69, 9292–9295; (c)
Joffe, A. L.; Thomas, T. M.; Adrian, J. C., Jr. Tetrahedron
Lett. 2004, 45, 5087–5090; (d) Aspinall, H. C.; Bissett, J.
S.; Greeves, N.; Levin, D. Tetrahedron Lett. 2002, 43, 323–
325; (e) Takaya, J.; Kagoshima, H.; Akiyama, T. Org.
Lett. 2000, 2, 1577–1579.
12. (a) Marcantoni, E.; Petrini, M.; Profeta, R. Tetrahedron
Lett. 2004, 45, 2133–2136; (b) Mecozzi, T.; Petrini, M.;
Profeta, R. Tetrahedron: Asymmetry 2003, 14, 1171–1178;
(c) Marcantoni, E.; Mecozzi, T.; Petrini, M. J. Org. Chem.
3. (a) Bur, S. K.; Martin, S. F. Tetrahedron 2001, 57, 3221–
3242; (b) Martin, S. F. Acc. Chem. Res. 2002, 35, 895–904;
`
2002, 67, 2989–2994; (d) Giardina, A.; Mecozzi, T.;
Petrini, M. J. Org. Chem. 2000, 65, 8277–8282.
´
(c) Cordova, A. Acc. Chem. Res. 2004, 37, 102–112.
13. General procedure for nucleophilic additions on a-amido
sulfones 6. Sulfone 6 (2 mmol) was dissolved in CH2Cl2
(20 mL), and the solution was cooled at À78 °C. TiCl4
(4 mmol) was then added dropwise in 15 min and the
temperature was kept at À78 °C for 30 min. The nucleo-
phile (3 mmol) dissolved in CH2Cl2 (10 mL) was then
added dropwise and after 1 h at À78 °C the temperature
was slowly raised to 0 °C. The reaction mixture was then
diluted with CH2Cl2 (20 mL), washed with brine and the
organic phase was dried over MgSO4. After removal of the
solvent at reduced pressure the additional product
obtained was purified by column chromatography.
Selected data of compounds: 9d: Oil. IR (cmÀ1, neat):
4. Yamamoto, Y.; Nakada, T.; Nemoto, H. J. Am. Chem.
Soc. 1992, 114, 121–125.
5. Reviews: (a) Maryanoff, B. E.; Zhang, H.-C.; Cohen, J.
H.; Turchi, I. J.; Maryanoff, C. A. Chem. Rev. 2004, 104,
1431–1628; (b) Speckamp, W. N.; Moolenaar, M. J.
Tetrahedron 2000, 56, 3817–3856; (c) De Koning, H.;
Speckamp, W. N. In Stereoselective Synthesis (Houben-
Weyl); Helmchen, G., Hoffman, R. W., Mulzer, J.,
Schaumann, E., Eds.; Georg Thieme: Stuttgart, 1995;
Vol. E21, pp 1953–2009.
6. Review on multicomponent coupling reactions involving
amides and aldehydes: von Wangelin, A. J.; Neumann, H.;
Go¨rdes, D.; Klaus, S.; Stubing, D.; Beller, M. Chem. Eur.
¨
1
3310, 1683. H NMR (300 MHz, CDCl3) d: 0.89 (t, 3H,
J. 2003, 9, 4286–4294.
J = 6.2 Hz); 1.11–1.79 (m, 10H); 1.81–2.16 (m, 2H); 2.18–
2.39 (m, 2H); 3.72–3.80 (m, 1H); 4.61 (d, 1H, J = 9.1 Hz);
5.02–5.20 (m, 4H); 5.24–5.48 (m, 2H); 5.66–5.92 (m, 1H);
7.22–7.41 (m, 5H). 13C NMR (75 MHz, CDCl3) d: 14.1,
23.2, 28.3, 30.0, 32.7, 33.3, 36.4, 39.6, 49.6, 69.6, 118.1,
127.3, 127.5, 127.7 130.2, 131.5, 134.4, 136.9, 156.9.
Compound 10b: Oil. IR (cmÀ1, neat): 3318, 1688. 1H
NMR (300 MHz, CDCl3) d: 0.88 (t, 3H, J = 7.1 Hz); 1.20–
1.42 (m, 10H); 1.90–2.08 (m, 2H); 3.67–3.80 (m, 1H); 3.78
(s, 3H); 4.95–5.03 (m, 1H); 5.05–5.15 (m, 2H), 5.43 (d, 1H,
J = 8.9 Hz); 6.83 (d, 2H, J = 9.0 Hz); 7.15 (d, 2H,
J = 9.0 Hz); 7.22–7.38 (m, 5H). 13C NMR (75 MHz,
CDCl3) d: 14.3, 22.9, 28.2, 29.4, 29.832.1, 36.3, 55.4, 55.8,
66.2, 113.8, 127.4, 128.1, 128.4, 128.6, 137.7, 138.2, 157.1,
157.9. Compound 12a : Oil. IR (cmÀ1, neat): 3339, 1728.
1H NMR (300 MHz, CDCl3) d: 0.83 (d, 3H, J = 6.2 Hz);
0.89 (d, 3H, J = 6.2 Hz); 1.20 (t, 3H, J = 7.0 Hz); 1.22–1.32
7. (a) Zaugg, H. E. Synthesis 1984, 85–110, and 181–212; (b)
Katritzky, A. R.; Manju, K.; Singh, S. K.; Meher, N. K.
Tetrahedron 2005, 61, 2555–2581; (c) Chevallier, F.;
Beaudet, I.; Le Grognec, E.; Toupet, L.; Quintard, J.-P.
Tetrahedron Lett. 2004, 45, 761–764; (d) Yaouancq, L.;
´
Rene, L.; Dau, M. J. Org. Chem. 2002, 67, 5408–5411; (e)
Vanier, C.; Wagner, A.; Mioskowski, C. Chem. Eur. J.
2001, 7, 2318–2323; (f) Marshall, J. A.; Gill, K.; Seletsky,
B. M. Angew. Chem., Int. Ed. 2000, 39, 953–956.
8. (a) Ella-Menye, J.-R.; Dobbs, W.; Billet, M.; Klotz, P.;
Mann, A. Tetrahedron Lett. 2005, 46, 1897–1900; (b)
Phukan, P. J. Org. Chem. 2005, 69, 4005–4006; (c) Smitha,
G.; Miriyala, B.; Williamson, J. S. Synlett 2005, 839–841;
(d) Ollevier, T.; Ba, T. Tetrahedron Lett. 2003, 44, 9003–
9005; (e) Billet, M.; Shoenfelder, A.; Klotz, P.; Mann, A.
Tetrahedron Lett. 2002, 43, 1453–1456; (f) Billet, M.;
Klotz, P.; Mann, A. Tetrahedron Lett. 2001, 42, 631–634.