Inorganic Chemistry
Article
II
Arai, M. Heterogeneous catalytic conversion of CO and epoxides to
cyclic carbonates by Mg /phosphine-catalyzed coupling reactions of
2
cyclic carbonates over multifunctional tri-s-triazine terminal-linked
ionic liquids. J. Catal. 2017, 347, 138−147.
carbon dioxide and epoxides. ChemCatChem 2013, 5, 1344−1349.
́
(c) Gomes, C. D. N.; Jacquet, O.; Villiers, C.; Thuery, P.; Ephritikhine,
(
6) (a) Kong, L. Y.; Zhang, Z. H.; Zhu, H. F.; Kawaguchi, H.;
M.; Cantat, T. A diagonal approach to chemical recycling of carbon
dioxide: organocatalytic transformation for the reductive functionaliza-
Okamura, T.; Doi, M.; Chu, Q.; Sun, W. Y.; Ueyama, N. Copper(II)
and Zinc(II) complexes can fix atmospheric carbon dioxide. Angew.
Chem., Int. Ed. 2005, 44, 4352−4355. (b) Liu, M. S.; Lu, X. Y.; Shi, L.;
Wang, F. X.; Sun, J. M. Periodic Mesoporous organosilica with a basic
urea-derived framework for enhanced carbon dioxide capture and
conversion under mild conditions. ChemSusChem 2017, 10, 1110−
tion of CO . Angew. Chem., Int. Ed. 2012, 51, 187−190. (d) Sun, J.;
2
Cheng, W. G.; Yang, Z. F.; Wang, J. Q.; Xu, T. T.; Xin, J. Y.; Zhang, S.
J. Superbase/cellulose: an environmentally benign catalyst for chemical
fixation of carbon dioxide into cyclic carbonates. Green Chem. 2014,
16, 3071−3078. (e) Seo, U. R.; Chung, Y. K. Poly(4-
vinylimidazolium)s/diazabicyclo[5.4.0]undec-7-ene/zinc(II) bromide-
catalyzed cycloaddition of carbon dioxide to epoxides. Adv. Synth.
Catal. 2014, 356, 1955−1961.
1119. (c) Guo, X. Y.; Zhou, Z.; Chen, C.; Bai, J. F.; Duan, C. Y.; He, C.
New rht-Type metal-organic frameworks decorated with acylamide
groups for efficient carbon dioxide capture and chemical fixation from
raw power plant flue gas. ACS Appl. Mater. Interfaces 2016, 8, 31746−
(14) (a) Yuan, S.; Zou, L. F.; Li, H. X.; Chen, Y. P.; Qin, J. S.; Zhang,
Q.; Lu, W. G.; Hall, M. B.; Zhou, H. C. Flexible zirconium metal-
organic frameworks as bioinspired switchable catalysts. Angew. Chem.,
Int. Ed. 2016, 55, 10776−10780. (b) Corma, A.; García, H.;
31756. (d) Zhou, Z.; He, C.; Yang, L.; Wang, Y. F.; Liu, T.; Duan, C.
Y. Alkyne activation by a porous silver coordination polymer for
heterogeneous catalysis of carbon dioxide cycloaddition. ACS Catal.
2
017, 7, 2248−2256. (e) Gao, C. Y.; Tian, H. R.; Ai, J.; Li, L. J.; Dang,
́
LlabresiXamena, F. X. Engineering Metal 0rganic frameworks for
S.; Lan, Y. Q.; Sun, Z. M. A microporous Cu-MOF with optimized
open metal sites and pore spaces for high gas storage and active
heterogeneous catalysis. Chem. Rev. 2010, 110, 4606−4655. (c) Li, Y.
L.; Zhao, D.; Zhao, Y.; Wang, P.; Wang, H. W.; Sun, W. Y. Synthesis,
structure, and magnetic and catalytic properties of metal frameworks
with 2,2′-dinitro-4,4′-biphenyldicarboxylate and imidazole-containing
tripodal Ligands. Dalton Trans. 2016, 45, 8816−8823.
chemical fixation of CO . Chem. Commun. 2016, 52, 11147−11150.
2
(
̌
f) Yan, Y.; Jurícek, M.; Coudert, F. X.; Vermeulen, N. A.; Grunder, S.;
̈
Dailly, A.; Lewis, W.; Blake, A. J.; Stoddart, J. F.; Schroder, M. Non-
Interpenetrated metal-organic frameworks based on copper(II)
paddlewheel and oligoparaxylene-isophthalate linkers: synthesis,
structure, and gas adsorption. J. Am. Chem. Soc. 2016, 138, 3371−
(15) Liu, L.; Wang, S. M.; Han, Z. B.; Ding, M. L.; Yuan, D. Q.; Jiang,
H. L. Exceptionally robust in-based metal-organic framework for
highly efficient carbon dioxide capture and conversion. Inorg. Chem.
2016, 55, 3558−3565.
3
381. (g) Zhao, D.; Liu, X. H.; Zhu, C. D.; Kang, Y. S.; Wang, P.; Shi,
Z. Z.; Lu, Y.; Sun, W. Y. Efficient and reusable metal-organic
framework catalysts for carboxylative cyclization of propargylamines
with carbon dioxide. ChemCatChem 2017, 9, 4598−4606.
(16) (a) Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.;
O’Keeffe, M.; Yaghi, O. M. Synthesis, structure, and carbon dioxide
capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res.
2010, 43, 58−67. (b) Qi, G. G.; Wang, Y. B.; Estevez, L.; Duan, X. N.;
Anako, N.; Park, A. H. A.; Li, W.; Jones, C. W.; Giannelis, E. P. High
(
7) (a) Paddock, R. L.; Nguyen, S. T. Chemical CO fixation: Cr(III)
2
salen complexes as highly efficient catalysts for the coupling of CO2
and epoxides. J. Am. Chem. Soc. 2001, 123, 11498−11499. (b) Zhao,
D.; Liu, X. H.; Shi, Z. Z.; Zhu, C. D.; Zhao, Y.; Wang, P.; Sun, W. Y.
Three powerful dinuclear metal-organic catalysts for converting CO2
into organic carbonates. Dalton Trans. 2016, 45, 14184−14190.
efficiency nanocomposite sorbents for CO capture based on amine-
2
functionalized mesoporous capsules. Energy Environ. Sci. 2011, 4, 444−
452. (c) De, D.; Pal, T. K.; Neogi, S.; Senthilkumar, S.; Das, D.; Gupta,
II
S. S.; Bharadwaj, P. K. A versatile Cu metal-organic framework
(
8) (a) Zhao, Y. L.; Qiu, J. K.; Tian, L.; Li, Z. Y.; Fan, M. H.; Wang, J.
exhibiting high gas storage capacity with selectivity for CO2:
J. New Copper(I)/DBU catalyst system for the carboxylative
conversion of CO to cyclic carbonate and other catalytic abilities.
2
cyclization of propargylic amines with atmospheric CO : an
experimental and theoretical study. ACS Sustainable Chem. Eng.
Chem. - Eur. J. 2016, 22, 3387−3396. (d) Li, P. Z.; Wang, X. J.; Liu, J.;
Lim, J. S.; Zou, R. Q.; Zhao, Y. L. A triazole-containing metal-organic
framework as a highly effective and substrate size-dependent catalyst
for CO2 conversion. J. Am. Chem. Soc. 2016, 138, 2142−2145.
(e) Gao, W. Y.; Chen, Y.; Niu, Y. H.; Williams, K.; Cash, L.; Perez, P.
J.; Wojtas, L.; Cai, J. F.; Chen, Y. S.; Ma, S. Q. Crystal engineering of
an nbo topology metal-organic framework for chemical fixation of CO2
under ambient conditions. Angew. Chem., Int. Ed. 2014, 53, 2615−
2619.
2
2
016, 4, 5553−5560. (b) He, H. M.; Perman, J. A.; Zhu, G. S.; Ma, S.
Q. Metal-organic frameworks for CO chemical transformations. Small
2
2
(
016, 12, 6309−6324.
9) (a) Zalomaeva, O. V.; Chibiryaev, A. M.; Kovalenko, K. A.;
Kholdeeva, O. A.; Balzhinimaev, B. S.; Fedin, V. P. Cyclic carbonates
synthesis from epoxides and CO over metal-organic framework Cr-
2
MIL-101. J. Catal. 2013, 298, 179−185. (b) Martín, C.; Fiorani, G.;
Kleij, A. W. Recent advances in the catalytic preparation of cyclic
organic carbonates. ACS Catal. 2015, 5, 1353−1370.
(17) Zhao, D.; Liu, X. H.; Zhao, Y.; Wang, P.; Liu, Y.; Azam, M.; Al-
Resayes, S. I.; Lu, Y.; Sun, W. Y. Luminescent Cd(II)-organic
(
10) Klankermayer, J.; Wesselbaum, S.; Beydoun, K.; Leitner, W.
frameworks with chelating NH sites for selective detection of Fe(III)
2
Selective catalytic synthesis using the combination of carbon dioxide
and hydrogen: catalytic chess at the interface of energy and chemistry.
Angew. Chem., Int. Ed. 2016, 55, 7296−7343.
and antibiotics. J. Mater. Chem. A 2017, 5, 15797−15807.
(18) Deng, Y.; Wang, P.; Zhao, Y.; Kang, Y. S.; Sun, W. Y. Syntheses,
structures and properties of zinc(II) and cadmium(II) coordination
polymers with mixed organic ligands. Microporous Mesoporous Mater.
2016, 227, 39−47.
(19) Deng, Y.; Yao, Z. Y.; Wang, P.; Zhao, Y.; Kang, Y. S.; Sun, W. Y.
Metal organic frameworks with 1,3-bis(1-imidazolyl)-5-(imidazol-1-
ylmethyl)benzene and 3,3′-disulfobiphenyl-4,4′-dicarboxylate ligands:
Synthesis, structure and selectively sensing property. Sens. Actuators, B
2017, 244, 114−123.
(20) Li, Y. L.; Zhao, Y.; Wang, P.; Kang, Y. S.; Liu, Q.; Zhang, X. D.;
Sun, W. Y. Multifunctional metal-organic frameworks with fluorescent
sensing and selective adsorption properties. Inorg. Chem. 2016, 55,
11821−11830.
(21) (a) Hameed, B. H.; Rahman, A. A. Removal of phenol from
aqueous solutions by adsorption onto activated carbon prepared from
biomass material. J. Hazard. Mater. 2008, 160, 576−581. (b) Qi, Z. P.;
Yang, J. M.; Kang, Y. S.; Guo, F.; Sun, W. Y. Facile water-stability
evaluation of metal-organic frameworks and the property of selective
(
11) (a) Zhu, M. Q.; Carreon, M. A. Porous crystals as active
catalysts for the synthesis of cyclic carbonates. J. Appl. Polym. Sci. 2014,
31, 39738−39750. (b) Yoshida, M.; Ihara, M. Novel methodologies
for the synthesis of cyclic carbonates. Chem. - Eur. J. 2004, 10, 2886−
893.
12) (a) Aresta, M.; Dibenedetto, A.; Angelini, A. Catalysis for the
1
2
(
valorization of exhaust carbon: from CO to chemicals, materials, and
2
fuels. technological use of CO . Chem. Rev. 2014, 114, 1709−1742.
2
(
b) Markewitz, P.; Kuckshinrichs, W.; Leitner, W.; Linssen, J.; Zapp,
̈
P.; Bongartz, R.; Schreiber, A.; Muller, T. E. Worldwide innovations in
the development of carbon capture technologies and the utilization of
CO . Energy Environ. Sci. 2012, 5, 7281−7305.
2
(
13) (a) Wang, X.; Lim, Y. N.; Lee, C.; Jang, H. Y.; Lee, B. Y. 1,5,7-
Triazabicyclo[4.4.0]dec-1-ene-mediated acetylene dicarboxylation and
alkyne carboxylation using carbon dioxide. Eur. J. Org. Chem. 2013,
2013, 1867−1871. (b) Ren, Y. P.; Shim, J. J. Efficient synthesis of
I
Inorg. Chem. XXXX, XXX, XXX−XXX