Organic Letters
Letter
stabilization of polar intermediates but is not predicted to be
ionic as EAS reactions possess larger negative ρ values.21 It is
important to note that diradicals, differing from radicals, do
possess polarity.
The diradical-based intermediates present in the rate-
determining step are analogous to what was found computa-
tionally for the phthaloyl peroxide mediated arene hydrox-
ylation reaction.16a A mechanistic pathway that is in agreement
is depicted in Figure 5. Carbon−oxygen bond formation yields
as Steve Sorey, Angela Spangenberg, and Dr. Ben Shoulders for
NMR assistance.
REFERENCES
■
(1) (a) Mason, H. S.; Fowlks, W.; Peterson, J. J. Am. Chem. Soc. 1955,
77, 2914. (b) Hayaishi, O.; Katagiri, M.; Rothberg, S. J. Am. Chem. Soc.
1955, 77, 5450. (c) Gibson, D. T.; Koch, J. R.; Kallio, R. E.
Biochemistry 1968, 7, 2653.
(2) Sono, M.; Roach, M. P.; Coulter, E. D.; Dawson, J. H. Chem. Rev.
1996, 96, 2841−2887.
(3) (a) Solomon, E. I.; Brunold, T. C.; Davis, M. I.; Kemsley, J. N.;
Lee, S. K.; Lehnert, N.; Neese, F.; Skulan, A. J.; Yang, Y. S.; Zhou, J.
Chem. Rev. 2000, 100, 235. (b) Neidig, M. L.; Solomon, E. I. Chem.
Commun. 2005, 5843.
(4) (a) Gibson, D. T.; Koch, J. R.; Schuld, C. L.; Kallio, R. E.
Biochemistry 1968, 7, 3795. (b) Hudlicky, T.; Gonzalez, D.; Gibson, D.
T. Aldrichimica Acta 1999, 32, 35.
(5) Magdziak, D.; Meek, S. J.; Pettus, T. R. R. Chem. Rev. 2004, 104,
1383.
(6) Roche, S. P.; Porco, J. A., Jr. Angew. Chem., Int. Ed. 2011, 50,
4068.
(7) (a) Yang, Q. L.; Njardarson, J. T.; Draghici, C.; Li, F. Angew.
Chem., Int. Ed. 2013, 52, 8648. (b) Yang, Q.; Draghici, C.; Njardarson,
J. T.; Li, F.; Smith, B. R.; Das, P. Org. Biomol. Chem. 2014, 12, 330.
(8) Feng, Z. G.; Bai, W. J.; Pettus, T. R. R. Angew. Chem., Int. Ed.
2015, 54, 1864.
Figure 5. Proposed mechanism of dearomatization reaction.
(9) Xu, X. F.; Zavalij, P. Y.; Doyle, M. P. Angew. Chem., Int. Ed. 2013,
52, 12664.
(10) Bauer, R. A.; Wenderski, T. A.; Tan, D. S. Nat. Chem. Biol. 2012,
a cyclohexadienyl radical 28. The carboxyl radical adds into the
ester carbonyl generating radical 29. Combination of the two
radicals forms the lactonic orthoester 3a.
9, 21.
(11) Huigens, R. W., III; Morrison, K. C.; Hicklin, R. W.; Flood, T.
A., Jr.; Richter, M. F.; Hergenrother, P. J. Nat. Chem. 2013, 5, 195.
(12) Grenning, A. J.; Boyce, J. H.; Porco, J. A. J. Am. Chem. Soc. 2014,
136, 11799.
(13) Russell, K. E. J. Am. Chem. Soc. 1955, 77, 4814.
(14) (a) Greene, F. D. J. Am. Chem. Soc. 1956, 78, 2246. (b) Greene,
F. D. J. Am. Chem. Soc. 1956, 78, 2250. (c) Greene, F. D.; Rees, W. W.
J. Am. Chem. Soc. 1958, 80, 3432. (d) Greene, F. D. J. Am. Chem. Soc.
1959, 81, 1503. (e) Greene, F. D.; Rees, W. W. J. Am. Chem. Soc. 1960,
82, 890. (f) Greene, F. D.; Rees, W. W. J. Am. Chem. Soc. 1960, 82,
893.
A new dearomatative oxidation reaction has been developed
using phthaloyl peroxide. High levels of chemoselectivity allow
the reaction to be run with predictability with benzodioxole and
dihydrobenzofuran derivatives reacting on the arene in
preference to other functional groups. Additionally, the reaction
is convientiently run in commercial grade solvents and, in most
cases, at ambient temperature. The determination of linear free
energy correlations fitting to σp with a ρ value of −2.93
supports previously proposed diradical intermediates. With an
absence of overoxidation of the resulting 1,3-cyclohexadiene the
reaction provides a key advancement in the development of
synthetic methods that can achieve aromatic dihydroxylation
reactions in a manner similar to Nature’s dioxygenases.
(15) Yuan, C. X.; Axelrod, A.; Varela, M.; Danysh, L.; Siegel, D.
Tetrahedron Lett. 2011, 52, 2540.
(16) (a) Yuan, C. X.; Liang, Y.; Hernandez, T.; Berriochoa, A.; Houk,
K. N.; Siegel, D. Nature 2013, 499, 192. (b) Yuan, C. X.; Eliasen, A.
M.; Camelio, A. M.; Siegel, D. Nat. Protoc. 2014, 9, 2624. (c) Eliasen,
A. M.; Thedford, R. P.; Claussen, K. R.; Yuan, C. X.; Siegel, D. Org.
Lett. 2014, 16, 3628. (d) Camelio, A. M.; Liang, Y.; Eliasen, A. M.;
Johnson, T. C.; Yuan, C.; Schuppe, A. W.; Houk, K. N.; Siegel, D. J.
Org. Chem. 2015, 80, 8084.
(17) Groves, J. T. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 3569.
(18) Benson, S. W.; Buss, J. H. J. Chem. Phys. 1958, 29, 546.
(19) Cohen, N. J. Phys. Chem. Ref. Data 1996, 25, 1411.
(20) Begue, J. P.; Bonnet-Delpon, D.; Crousse, B. Synlett 2004, 18.
(21) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures, characterization data, and
spectral reproductions for all new compounds (PDF)
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We acknowledge financial support from the Welch Foundation
(F-1694) and the University of California, San Diego. We
thank, from UT Austin, Professor Eric Ansyln for helpful
discussions, Dr. Vince Lynch for X-ray diffraction data, as well
D
Org. Lett. XXXX, XXX, XXX−XXX