Journal of the American Chemical Society
Communication
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This paper is dedicated to Prof. Dr. G. Bringmann on the
occasion of his 60th birthday. Financial support of this work by
the Deutsche Forschungsgemeinschaft (IRTG 1038) is grate-
fully acknowledged. We thank O. Fuchs for skillful technical
support, V. Brecht for measurement of NMR spectra, and Prof.
Dr. G. Fuchs and Prof. Dr. H. G. Floss for helpful discussions.
REFERENCES
■
(1) (a) Frank, B. Angew. Chem. 1984, 96, 462. (b) Peres, V.; Nagem,
T. J. Phytochemistry 1997, 44, 191. (c) Peres, V.; Nagem, T. J.;
Faustino de Oliveira, F. Phytochemistry 2000, 55, 683. (d) Masters, K.-
S.; Brase, S. Chem. Rev. 2012, 112, 3717.
̈
(2) (a) Krick, A.; Kehraus, S.; Gerhauser, C.; Klimo, K.; Nieger, M.;
̈
Maier, A.; Fiebig, H.-H.; Atodiresei, I.; Raabe, G.; Fleischhauer, J.;
Konig, G. M. J. Nat. Prod. 2007, 70, 353. (b) Bok, J. W.; Chiang, Y.-M.;
̈
Szewczyk, E.; Reyes-Dominguez, Y.; Davidson, A. D.; Sanchez, J. F.;
Lo, H.-C.; Watanabe, K.; Strauss, J.; Oakley, B. R.; Wang, C. C. C.;
Keller, N. P. Nat. Chem. Biol. 2009, 5, 462. (c) Chiang, Y.-M.;
Szewczyk, E.; Davidson, A. D.; Entwistle, R.; Keller, N. P.; Wang, C. C.
C.; Oakley, B. R. Appl. Environ. Microbiol. 2010, 76, 2067.
Figure 3. Natural products derived from a 3,9-dihydroxy-3,4-
dihydroanthracen-1(2H)-one substructure.19,20,22 Dashed box: dehy-
dration of 18 leading to islandicin (19).
(3) (a) Birch, A. J.; Baldas, J.; Hlubucek, J. R.; Simpson, T. J.;
Westerman, P. W. J. Chem. Soc., Perkin Trans. 1 1976, 898. (b) Hill, J.
G.; Nakashima, T. T.; Vederas, J. C. J. Am. Chem. Soc. 1982, 104, 1745.
(c) Henry, K. M.; Townsend, C. A. J. Am. Chem. Soc. 2005, 127, 3724.
(4) (a) Holker, J. S. E.; Lapper, R. D.; Simpson, T. J. J. Chem. Soc.,
Perkin Trans. 1 1974, 2135. (b) Bardshiri, E.; Simpson, T. J. J. Chem.
Soc., Chem. Commun. 1981, 195. (c) Ahmed, S. A.; Bardshiri, E.;
Simpson, T. J. J. Chem. Soc., Chem. Commun. 1987, 883. (d) Ahmed, S.
A.; Bardshiri, E.; McIntyre, C. R.; Simpson, T. J. Aust. J. Chem. 1992,
45, 249. (e) Sanchez, J. F.; Entwistle, R.; Hung, J.-H.; Yaegashi, J.; Jain,
S.; Chiang, Y.-M.; Wang, C. C. C.; Oakley, B. R. J. Am. Chem. Soc.
2011, 133, 4010. (f) Nielsen, M. L.; Nielsen, J. B.; Rank, C.;
Klejnstrup, M. L.; Holm, D. K.; Brogaard, K. H.; Hansen, B. G.;
Frisvad, J. C.; Larsen, T. O.; Mortensen, U. H. FEMS Microbiol. Lett.
2011, 321, 157.
turn has been shown to represent a precursor for the formation
of ergochrome EE (6), albeit with a lower incorporation rate
than for 7.5d Although the timing of A-ring hydroxylation is
uncertain, the involvement of homologous enzymes in the
biosynthesis of 6 is suggested.
The substructure mentioned can also be found as a
monomeric unit of bianthraquinones, such as (−)-flavoskyrin
(20) and (−)-rugulosin (21), which suggests the same
biosynthetic course.20 The biomimetic synthesis of bianthra-
quinones from similar monomeric units has been described.21
Several natural products also exhibit an anthrone-derived
substructure, such as aloesaponol I (22), aloesaponol II (23),
and germichrysone (24).22
In summary, we have shown that MdpC from the putative
monodictyphenone gene cluster converts the tautomers of
emodin hydroquinone (8) into the 3-hydroxy-3,4-dihydroan-
thracen-1(2H)-one derivative 9. The occurrence of this
transformation instead of reduction of the quinone illustrates
the importance of considering the reduced state of the cell in
biosynthesis. Although strong hints imply a reaction sequence
starting with an initial reduction, 9 and chrysophanol (7) or the
respective hydroquinone/oxanthrone remain to be confirmed
as the precursors for subsequent transformations. Homologous
enzymes showing high similarity to MdpC, such as AflM of the
aflatoxin gene cluster (77% similarity),23 might be involved in
analogous transformations. Accordingly, the identification of
the function of MdpC will broaden the scope of catalytic
asymmetric dearomatization reactions.17,24
(5) (a) Franck, B.; Huper, F.; Groger, D.; Erge, D. Chem. Ber. 1968,
̈
̈
101, 1954. (b) Kurobane, I.; Vining, L. C. Tetrahedron Lett. 1978, 19,
1379. (c) Steyn, P. S. Pure Appl. Chem. 1980, 52, 189. (d) Franck, B.;
Bringmann, G.; Flohr, G. Angew. Chem., Int. Ed. Engl. 1980, 19, 460.
(6) (a) Anderson, J. A. Phytochemistry 1986, 25, 103. (b) Anderson, J.
A.; Lin, B.-K.; Williams, H. J.; Scott, A. I. J. Am. Chem. Soc. 1988, 110,
1623. (c) Anderson, J. A.; Lin, B.-K.; Wang, S. S. Phytochemistry 1990,
29, 2415. (d) Anderson, J. A.; Lin, B.-K. Phytochemistry 1993, 32, 811.
(7) Simpson, T. J. ChemBioChem 2012, 13, 1680.
(8) (a) Chumley, F. G.; Valent, B. Mol. Plant-Microbe Interact. 1990,
3, 135. (b) Thompson, J. E.; Fahnestock, S.; Farrall, L.; Liao, D.-I.;
Valent, B.; Jordan, D. B. J. Biol. Chem. 2000, 275, 34867. (c) Vidal-
Cros, A.; Viviani, F.; Labesse, G.; Boccara, M.; Gaudry, M. Eur. J.
Biochem. 1994, 219, 985.
(9) (a) Broadbent, A. D.; Sommermann, E. F. J. Chem. Soc. B 1967,
376. (b) Broadbent, A. D.; Sommermann, E. F. J. Chem. Soc. B 1968,
519. (c) Broadbent, A. D.; Sommermann, E. F. J. Chem. Soc. B 1968,
1144. (d) Bredereck, K.; Sommermann, F.; Diamantoglou, M. Chem.
Ber. 1969, 102, 1053. (e) Bredereck, K.; Diamantoglou, M.;
Sommermann, F. Chem. Ber. 1970, 103, 1748.
ASSOCIATED CONTENT
* Supporting Information
Experimental details and characterization data. This material is
■
(10) (a) Viviani, F.; Gaudry, M.; Marquet, A. J. Chem. Soc., Perkin
Trans. 1 1990, 1255. (b) Simpson, T. J.; Weerasooriya, M. K. B. J.
Chem. Soc., Perkin Trans. 1 2000, 2771. (c) Ichinose, K.; Ebizuka, Y.;
Sankawa, U. Chem. Pharm. Bull. 2001, 49, 192.
S
(11) (a) Powis, G.; Briehl, M.; Oblong, J. Pharmacol. Ther. 1995, 68,
149. (b) Brock, B. J.; Rieble, S.; Gold, M. H. Appl. Environ. Microbiol.
1995, 61, 3076. (c) Sollner, S.; Deller, S.; Macheroux, P.; Palfey, B. A.
Biochemistry 2009, 48, 8636.
AUTHOR INFORMATION
Corresponding Author
■
14744
dx.doi.org/10.1021/ja307151x | J. Am. Chem. Soc. 2012, 134, 14742−14745