Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
5
6
shown in Scheme 4, substrate 1a undergoes intramolecular
aminopalladation to form σ-alkylpalladium intermediate A, in
which the double bond might coordinate to the alkyl-Pd(II)
(c) O. Saidi, J. Marafie, A. E. W. LeDdgOeI:r1,0P.1.03M9/.D0LCiuC,0M08.72FA.
Mahon, G. Kociok-Kohn, M. K. Whittlesey and C. G. Frost, J.
Am. Chem. Soc., 2011, 133, 19298; (d) N. Hofmann and L.
Ackermann, J. Am. Chem. Soc., 2013, 135, 5877.
species. The N–H deprotonation by
a base generates
intermediate B. The subsequent intramolecular olefin insertion
yields a second alkyl-Pd(II) intermediate C. The resulting Pd(II)
cleaves an aryl C–H bond to give palladacycle D. D can react
(a) V. P. Mehta and J.-A. García-López, ChemCatChem, 2017,
9, 1149; (b) J. Ye, Z. Shi, T. Sperger, Y. Yasukawa, C. Kingston,
F. Schoenebeck and M. Lautens, Nat. Chem., 2017, 9, 361; (c)
Y. Hyung, Angew. Chem., Int. Ed., 2017, 56, 10920; (d) H.
Zheng, Y. Zhu and Y. Shi, Angew. Chem., Int. Ed., 2014, 53,
11280; (e) T. Piou, L. Neuville and J. Zhu, Angew. Chem., Int.
Ed., 2012, 51, 11561; (f) M. Wang, X. Zhang, Y.-X. Zhuang, Y.-
H. Xu and T.-P. Loh, J. Am. Chem. Soc., 2015, 137, 1341; (g)
M. Pérez-Gómez and J.-A. García-López, Angew. Chem., Int.
Ed., 2016, 55, 14389; (h) X. Luo, Y. Xu, G. Xiao, W. Liu, C.
Qian, G. Deng, J. Song, Y. Liang and C. Yang, Org. Lett., 2018,
20, 2997; (i) P. Li, Q. Li, H. Weng, J. Diao, H. Yao and A. Lin,
Org. Lett., 2019, 21, 6765.
(a) K.-T. Yip and D. Yang, Org. Lett., 2011, 13, 2134; (b) W.
Du, Q. Gu, Z. Li and D. Yang, J. Am. Chem. Soc., 2015, 137,
1130.
D. N. Garad and S. B. Mhaske, Org. Lett., 2016, 18, 3862.
W. Zhang, P. Chen and G. Liu, Angew. Chem., Int. Ed., 2017,
56, 5336.
with
hexamethyldisilane
via
either
an
oxidative
addition/reductive elimination or σ-bond metathesis
pathway.18 In these steps, an alkyl-Pd(II) or aryl-Pd(II)
intermediate may be formed. Finally, the reductive elimination
of G or G’ generates product 3a and releases Pd(0) species.
The catalytic cycle is completed by the regeneration of Pd(II)
from Pd(0) with Ag(I) as the oxidant.
In conclusion, we have developed a new Pd(II)-catalyzed
intermolecular C–H silylation reaction initiated by
aminopalladation. The reaction formed disilylated indolines as
the final products in moderate to good yields, providing a
novel and straightforward method for the introduction of silyl
groups into complex organic molecules.
7
8
9
10 Although σ-alkylpalladium generated by aminopalladation
could activate C–H bonds of simple arenes intermolecularly,
these have been found to preferentially cleave the C–H
bonds of an external arene substrate, rather than a C–H
bond tethered to the nitrogen atom of the substrate. C. F.
Rosewall, P. A. Sibbald, D. V. Liskin, F. E. Michael, J. Am.
Chem. Soc., 2009, 131, 9488.
11 (a) Chemistry of Organosilicon Compounds, vol. 3 (Eds.: Z.
Rappoport and Y. Apeloig), Wiley-VCH, New York, 2001; (b)
Silicon in Organic, Organometallic and Polymer Chemistry
(Eds.: M. A. Brook), Wiley, New York, 2000.
Conflicts of interest
There are no conflicts to declare.
Notes and references
‡ The work was supported by the National Natural Science
Foundation of China (No.216721626) and Shanghai Science and
Technology Commission (14DZ2261100).
1
(a) J.-Q. Yu and Z. Shi, C−H Activation, Springer, Berlin, 2010; 12 (a) Silicon Polymers (Eds.: A. M. Muzafarov), Springer,
(b) Y. Zhang, G. Shi and J.-Q. Yu, in Comprehensive Organic
Synthesis, ed. P. Knochel and G. A. Molander, Elsevier,
Oxford, 2014, 2nd, vol. 3, pp 1101-1209; (c) C. Liu, J. Yuan, M.
Heidelberg, 2011; (b) Silicon-Containing Polymers (Eds.: R. G.
Jones, W. Ando and J. Chojnowski), Kluwer Academic,
Dordrecht, 2000.
Gao, S. Tang, W. Li, R. Shi and A. Lei, Chem. Rev., 2015, 115, 13 (a) M. Mortensen, R. Husmann, E. Veri and C. Bolm, Chem.
12138; (d) T. Gensch, M. N. Hopkinson, F. Glorius and J.
Wencel-Delord, Chem. Soc. Rev., 2016, 45, 2900; (e) G. Song
and X. Li, Acc. Chem. Res., 2015, 48, 1007; (f) R. Shang, L. Ilies
Soc. Rev., 2009, 38, 1002; (b) A. K. Franz and S. O. Wilson, J.
Med. Chem., 2013, 56, 388; (c) S. M. Sieburth, T. Nittoli, A.
M. Mutahi, L. Guo, Angew. Chem., Int. Ed., 1998, 37, 812.
and E. Nakamura, Chem. Rev., 2017, 117, 9086; (g) M. 14 (a) A. Lu, X. Ji, B. Zhou, Z. Wu and Y. Zhang, Angew. Chem.,
Moselage, J. Li and L. Ackermann, ACS Catal., 2016, 6, 498;
(h) O. Baudoin, Acc. Chem. Res., 2017, 50, 1114.
(a) T. W. Lyons and M. S. Sanford, Chem. Rev., 2010, 110,
1147; (b) K. M. Engle, T.-S. Mei, M. Wasa and J.-Q. Yu, Acc.
Chem. Res., 2012, 45, 788; (c) Z. Chen, B. Wang, J. Zhang, W.
Yu, Z. Liu and Y. Zhang, Org. Chem. Front., 2015, 2, 1107.
Int. Ed., 2018, 57, 3233; (b) W. Lv, S. Wen, J. Yu and G.
Cheng, Org. Lett., 2018, 20, 4984; (c) W. Lv, J. Yu, B. Ge, S.
Wen and G. Cheng, J. Org. Chem., 2018, 83, 12683; (d) Y. Xu,
X. Liu, W. Chen, G. Deng, Y. Liang and Y. Yang, J. Org. Chem.,
2018, 83, 13930; (e) W. Li, W. Chen, B. Zhou, Y. Xu, G. Deng,
Y. Liang and Y. Yang, Org. Lett., 2019, 21, 2718.
2
3
(a) D. Leow, G. Li, T.-S. Mei and J.-Q. Yu, Nature, 2012, 486, 15 (a) D. Chen, G. Shi, H. Jiang, Y. Zhang and Y. Zhang, Org. Lett.,
518; (b) S. Bag, T. Patra, A. Modak, A. Deb, S. Maity, U. Dutta,
A. Dey, R. Kancherla, A. Maji, A. Hazra, M. Bera and D. Maiti,
J. Am. Chem. Soc., 2015, 137, 11888; (c) A. Dey, S. K. Sinha, T.
K. Achar and D. Maiti, Angew. Chem., Int. Ed., 2019, 58,
10820; (d) L. Zhang, C. Zhao, Y. Liu, J. Xu, X. Xu and Z. Jin,
Angew. Chem., Int. Ed., 2017, 56, 12245; (e) Li, S. H. Wang, Y.
Weng and G. Li, Angew. Chem., Int. Ed., 2019, 58, 18502.
(a) J. Wang and G. Dong, Chem. Rev., 2019, 119, 7478; (b) H.-
2016, 18, 2130; (b) G. Shi, D. Chen, H. Jiang, Y. Zhang and Y.
Zhang, Org. Lett., 2016, 18, 2958; (c) C. Shao, Z. Wu, X. Ji, B.
Zhou and Y. Zhang, Chem. Commun., 2017, 53, 10429; (d) Z.
Wu, D. Ma, B. Zhou, X. Ji, X. Ma, X. Wang and Y. Zhang,
Angew. Chem., Int. Ed., 2017, 56, 12288; (e) B. Zhou, Z., D.
Ma, X. Ji and Y. Zhang, Org. Lett., 2018, 20, 6440; (f) B. Zhou,
A. Lu, C. Shao, X. Liang and Y. Zhang, Chem. Commun., 2018,
54, 10598.
4
G. Cheng, S. Chen, R. Chen and Q. Zhou, Angew. Chem., Int. 16 CCDC 2007063 contains the supplementary crystallographic
Ed., 2019, 58, 5832; (c) X.-C. Wang, W. Gong, L.-Z. Fang, R.-Y.
Zhu, S. Li, K. M. Engle and J.-Q. Yu, Nature, 2015, 519, 334;
(d) Z. Dong, J. Wang and G. Dong, J. Am. Chem. Soc., 2015, 17 P. Kočovský and J.-E. Bäckvall, Chem. Eur. J., 2015, 21, 36.
137, 5887; (e) J. Han, L. Zhang, Y. Zhu, Y. Zheng, X. Chen, Z.-B. 18 (a) T. Matsuda and H. Kirikae, Organometallics, 2011, 30,
Huang, D.-Q. Shi and Y. Zhao, Chem. Commun., 2016, 52,
6903.
data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre.
3923. (b) A. Deb, S. Singh, K. Seth, S. Pimparkar, B.
Bhaskararao, S. Guin, R. B. Sunoj and D. Maiti, ACS Catal.,
2017, 7, 8171.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins