˚
J. Cassidy, M. S. Shet, R. Mannion, E. O’Donnell and A. Park, Pharm.
Res., 2006, 23, 1888–1897; A. V. Trask, W. D. S. Motherwell and
W. Jones, Int. J. Pharm., 2006, 320, 114–123; L. S. Reddy, N. J. Babu
and A. Nangia, Chem. Commun., 2006, 13, 1369–1371; N. Rodriguez-
Hornedo, S. J. Nehm, K. F. Seefeldt, Y. Pagan-Torres and
C. J. Falkiewicz, Mol. Pharm., 2006, 3, 362–367; N. Variankaval,
R. Wenslow, J. Murry, R. Hartman, R. Helmy, E. Kwong, S.-D. Clas,
C. Dalton and I. Santos, Cryst. Growth Des., 2006, 6, 690–700; A. J.
Cruz Cabeza, G. M. Day, W. D. S. Motherwell and W. Jones, Cryst.
Growth Des., 2007, 7, 100–107.
2
.622(2) A). The connectivity in this supermolecule mirrors the
intermolecular behavior observed in 15, and can again be
rationalized using an electrostatic argument based upon calculated
molecular electrostatic potentials.
The deceptively simple act of molecular recognition is achieved
by balancing a range of relatively weak non-covalent, forces and to
determine the reliability and limitations of the synthetic protocol
presented here, a large number of reactions need to be examined in
a systematic manner. The simplicity of the synthetic principles
employed herein, should make it relatively easy to modify the
nature of the different building blocks in order to maximize the
supramolecular yield, and by translating molecular function into
predictable intermolecular recognition, it may be possible to
develop much more versatile supramolecular synthetic pathways
for materials design and biological mimics.
6
7
C. B. Aaker o¨ y, N. Schultheiss, J. Desper and C. Moore, New J. Chem.,
2006, 30, 1452–1460; M. Du, Z.-H. Zhang, X.-G. Wang, H.-F. Wu and
Q. Wang, Cryst. Growth Des., 2006, 6, 1867–1875; M. Du, Z.-H.
Zhang, X.-G. Wang and C.-P. Li, J. Mol. Struct., 2006, 791(1–3),
1
31–136.
B. R. Bhogala, S. Basavoju and A. Nangia, CrystEngComm, 2005, 7,
51–562; B. R. Bhogala, S. Basavoju and A. Nangia, Cryst. Growth
5
Des., 2005, 5, 1683–1686; C. B. Aaker o¨ y, A. M. Beatty and
B. A. Helfrich, Angew. Chem., Int. Ed., 2001, 40, 3240; T. Friscic,
A. V. Trask, W. Jones and W. D. S. Motherwell, Angew. Chem., Int.
Ed., 2006, 45, 7546; T. Smolka, R. Boese and R. Sustmann, Struct.
Chem., 1999, 10, 429; C. B. Aaker o¨ y, J. Desper, E. Elisabeth,
B. A. Helfrich, B. Levin and J. F. Urbina, Z. Kristallogr., 2005,
We are grateful for financial support from NSF (CHE-
0
316479), the Terry C. Johnson Cancer Foundation, and NSF-
EPSCoR (#43529).
2
20, 325.
C. B. Aaker o¨ y, J. Desper and J. F. Urbina, Chem. Commun., 2005,
820–2822.
B. G. Tehan, E. J. Lloyd, M. G. Wong, W. R. Pitt, J. G. Montana,
D. T. Manallack and E. Gancia, Quant. Struct. Act. Relat., 2002, 21,
8
9
Notes and references
2
1
2
C. B. Aaker o¨ y and D. J. Salmon, CrystEngComm, 2005, 7, 439.
G. J. Gainsford, S. M. Baars and A. Falshaw, Acta Crystallogr., Sect.
C: Cryst. Struct. Commun., 2007, C63, o169–o172; K. L. Nguyen,
T. Friscic, G. M. Day, L. F. Gladden and W. Jones, Nat. Mater., 2007,
4
57.
0 C. Laurence and H. Berthelot, Perspect. Drug Discovery Des., 2000, 18,
9.
1 C. A. Hunter, Angew. Chem., Int. Ed., 2004, 43, 5310–5324.
2 Molecular structures for 1–8 were constructed using Spartan ’04
Wavefunction, Inc. Irvine, CA). All three molecules were optimized
using AM1, with the maxima and minima in the electrostatic potential
1
3
6, 206; T. Lavy, N. Meirovich, H. A. Sparkes, J. A. K. Howard and
1
1
M. Kaftory, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2007,
C63, o89–o92; M. L. Cheney, G. J. McManus, J. A. Perman, Z. Wang
and M. J. Zaworotko, Cryst. Growth Des., 2007, 7, 66.
(
3
A. N. Sokolov, T. Friscic and L. R. MacGillivray, J. Am. Chem. Soc.,
2006, 128, 2806; M. Morimoto, S. Kobatake and M. Irie, Cryst. Growth
2
1
surface (0.002 e au isosurface) determined using a positive point
charge in the vacuum as a probe.
3 C. B. Aaker o¨ y, D. J. Salmon, M. M. Smith and J. Desper, Cryst.
Des., 2003, 3, 847; B. R. Bhogala, S. Basavoju and A. Nangia, Cryst.
Growth Des., 2005, 5, 1683.
1
Growth Des., 6, 1033–1042.
4
5
G. R. Desiraju, CrystEngComm, 2003, 5, 466–467; J. D. Dunitz,
CrystEngComm, 2003, 5, 506.
14 M. Du, Z.-H. Zhang and X.-J. Zhao, Cryst. Growth Des., 2006, 6(2),
390–396; C. B. Aaker o¨ y, I. Hussain and J. Desper, Cryst. Growth Des.,
2006, 6, 474–480.
A. M. Chen, M. E. Ellison, A. Peresypkin, R. M. Wenslow,
N. Variankaval, C. G. Savarin, T. K. Natishan, D. J. Mathre,
P. G. Dormer, D. H. Euler, R. G. Ball, Z. Ye, Y. Wang and I. Santos,
Chem. Commun., 2007, 4, 419–421; W. Jones, W. D. S. Motherwell and
A. V. Trask, MRS Bull., 2006, 31, 875–879; A. Jayasankar,
A. Somwangthanaroj, Z.-J. Shao and N. Rodriguez-Hornedo, Pharm.
Res., 2006, 23, 2381–2392; H. Steuber, M. Zentgraf, C. Gerlach,
C. A. Sotriffer, A. Heine and G. Klebe, J. Mol. Biol., 2006, 363,
15 M. H. Abraham, Chem. Rev., 1993, 73.
16 We are seeking more structural data to get better statistics in order to
test our hypothesis and the limitations of this approach.
17 We were unable to obtain suitable crystals with benzoic acid, 4, and 7,
but the MEP for 8 is comparable with that of benzoic acid
2
1
(134 kJ mol ), so the experiment still provides a valid test of the
initial hypothesis.
174–187; D. P. McNamara, S. L. Childs, J. Giordano, A. Iarriccio,
3
938 | Chem. Commun., 2007, 3936–3938
This journal is ß The Royal Society of Chemistry 2007