Journal Pre-proof
[7] N. El‐ Hamdouni, X. Companyó, R. Rios, A. Moyano, Substrate‐ Dependent Nonlinear Effects in Proline–
Thiourea‐ Catalyzed Aldol Reactions: Unraveling the Role of the Thiourea Co‐ Catalyst, Chem.: Eur. J. 16
(2010) 1142-1148.
[8] J.V. Alegre-Requena, E. Marqués-López, R.P. Herrera, D.D. Díaz, Metal–organic frameworks (MOFs) bring
new life to hydrogen-bonding organocatalysts in confined spaces, CrystEngComm, 18 (2016) 3985-3995.
[9] Y. Luan, N. Zheng, Y. Qi, J. Tang, G. Wang, Merging metal–organic framework catalysis with
organocatalysis: A thiourea functionalized heterogeneous catalyst at the nanoscale, Catal. Sci. Technol. 4 (2014)
925-929.
[10] A. Puglisi, M. Benaglia, R. Annunziata, J.S. Siegel, Immobilization of chiral bifunctional organocatalysts
on poly (methylhydrosiloxane), ChemCatChem, 4 (2012) 972-975.
[11] M.Y. Masoomi, A. Morsali, A. Dhakshinamoorthy, H. García, Mixed‐ Metal MOFs: Unique Opportunities
in Metal‐ organic Framework Functionality and Design, Angew. Chem., Int. Ed. 58(2019) 15188-15205.
[12] A. Dhakshinamoorthy, A.M. Asiri, H. Garcia, 2D Metal–Organic Frameworks as Multifunctional Materials
in Heterogeneous Catalysis and Electro/Photocatalysis, Adv. Mater. 31 (2019) 1900617.
[13] A. Dhakshinamoorthy, Z. Li, H. Garcia, Catalysis and photocatalysis by metal organic frameworks,
Chem.Soc. Rev. 47 (2018) 8134-8172.
[14] U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, J. Pastre, Metal–organic frameworks-
prospective industrial applications, J. Mater. Chem. 16 (2006) 626-636.
[15] Z.Y. Gu, X.P. Yan, Metal–organic framework MIL‐ 101 for high‐ resolution gas‐ chromatographic
separation of xylene isomers and ethylbenzene, Angew. Chem., Int. Ed. 49 (2010) 1477-1480.
[16] S. Wang, L. Bromberg, H. Schreuder-Gibson, T.A. Hatton, Organophophorous ester degradation by
chromium (III) terephthalate metal–organic framework (MIL-101) chelated to N, N-dimethylaminopyridine and
related aminopyridines, ACS Appl. Mater. Interfaces, 5 (2013) 1269-1278.
[17] R. Mohammadian, M.K. Alavijeh, N. Kamyar, M.M. Amini, A. Shaabani, Metal–organic frameworks as a
new platform for molecular oxygen and aerobic oxidation of organic substrates: Recent advances, Polyhedron,
156 (2018) 174-187.
[18] A. Shaabani, R. Mohammadian, H. Farhid, M.K. Alavijeh, M.M. Amini, Iron-Decorated, Guanidine
Functionalized Metal-Organic Framework as a Non-heme Iron-Based Enzyme Mimic System for Catalytic
Oxidation of Organic Substrates, Catal. Lett. 149 (2019) 1237-1249.
[19] M.J. Kim, S.M. Park, S.-J. Song, J. Won, J.Y. Lee, M. Yoon, K. Kim, G. Seo, Adsorption of pyridine onto
the metal organic framework MIL-101, J. Colloid Interface Sci. 361 (2011) 612-617.
[20] F. Yang, C.-X. Yang, X.-P. Yan, Post-synthetic modification of MIL-101 (Cr) with pyridine for high-
performance liquid chromatographic separation of tocopherols, Talanta, 137 (2015) 136-142.
[21] Y. Saito, J. Takemoto, B. Hutchinson, K. Nakamoto, Infrared studies of coordination compounds
containing low-oxidation-state metals. I. Tris (2, 2'-bipyridine) and tris (1, 10-phenanthroline) complexes, Inorg.
Chem. 11 (1972) 2003-2011.
[22] J. Shirahata, T. Ohori, H. Asami, T. Suzuki, T. Nakayama, H. Suematsu, K. Niihara, Fourier-Transform
Infrared Absorption Spectroscopy of Chromium Nitride Thin Film, Jpn. J. Appl. Phys. 50 (2011) 01BE03.
[23] D. Jiang, A.D. Burrows, K.J. Edler, Size-controlled synthesis of MIL-101 (Cr) nanoparticles with enhanced
selectivity for CO2 over N2, CrystEngComm, 13 (2011) 6916-6919.
[24] G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, A chromium
terephthalate-based solid with unusually large pore volumes and surface area, Science, 309 (2005) 2040-2042.
[25] S. Lancianesi, A. Palmieri, M. Petrini, Synthetic approaches to 3-(2-nitroalkyl) indoles and their use to
access tryptamines and related bioactive compounds, Chem. Rev. 114 (2014) 7108-7149.
[26] G. Dessole, R.P. Herrera, A. Ricci, H-bonding organocatalysed Friedel-Crafts alkylation of aromatic and
heteroaromatic systems with nitroolefins, Synlett, 2004 (2004) 2374-2378.
[27] X.-H. Chen, X.-Y. Xu, H. Liu, L.-F. Cun, L.-Z. Gong, Highly enantioselective organocatalytic Biginelli
reaction, J. Am. Chem. Soc. 128 (2006) 14802-14803.
[28] S. Saha, J.N. Moorthy, Enantioselective organocatalytic Biginelli reaction: dependence of the catalyst on
sterics, hydrogen bonding, and reinforced chirality, J. Org. Chem. 76 (2010) 396-402.
[29] A. Das, N. Anbu, A. Dhakshinamoorthy, S. Biswas, Highly Active Urea-Functionalized Zr (IV)-UiO-67
Metal–Organic Framework as Hydrogen Bonding Heterogeneous Catalyst for Friedel–Crafts Alkylation, Inorg.
Chem. 58 (2019) 5163-5172.
[30] P.C. Rao, S. Mandal, Friedel–Crafts Alkylation of Indoles with Nitroalkenes through
Hydrogen‐ Bond‐ Donating Metal–Organic Framework, ChemCatChem, 9 (2017) 1172-1176.
[31] X.-J. Wang, J. Li, Q.-Y. Li, P.-Z. Li, H. Lu, Q. Lao, R. Ni, Y. Shi, Y. Zhao, A urea decorated (3, 24)-
connected rht-type metal–organic framework exhibiting high gas uptake capability and catalytic activity,
CrystEngComm, 17 (2015) 4632-4636.
[32] I. Suzuki, Y. Iwata, K. Takeda, Biginelli reactions catalyzed by hydrazine type organocatalyst, Tetrahedron
Lett. 49 (2008) 3238-3241.