Journal of the American Chemical Society
Page 4 of 12
4
6,49,62
switches is very rare.
Moreover, such approach to the itera-
10081–10206.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
tive catch and release of a guest molecule is, to the best of our
knowledge, unprecedented.
(6)
Berryman, O. B.; Sather, A. C.; Lledó, A.; Rebek, J. Switchable
Catalysis with a Light-Responsive Cavitand. Angew. Chemie Int.
Ed. 2011, 50 (40), 9400–9403.
In summary, this work presents the first ON/OFF photoswitch-
able heteroditopic ion pair receptor 1, with a simple and modular
design based on the acylhydrazone photoswitch. Despite its sim-
ple structure, E-1 effectively binds various alkali metal salts in
acetonitrile and shows strong cooperativity between the cation
and anion binding. The receptor exhibits two very stable configu-
rational isomers, E-1 and Z-1, which represent binding and non-
binding forms, respectively. The proposed modes of binding were
unambiguously characterized by X-ray structures and NMR spec-
troscopic investigations. The E-1 was found to bind anions, cati-
ons and ion pairs of different geometries. The photoswitching
between the ON and OFF modes was successfully achieved
through cycles of UV light irradiation with different wavelengths
and, more effectively, by alternating UV light irradiation with
acid/base treatment. Furthermore, the simple modular synthesis
and versatile ion binding properties of E-1 may allow its easy
incorporation in a broad range of supramolecular systems. Poten-
(
(
7)
8)
De Bo, G.; Leigh, D. A.; McTernan, C. T.; Wang, S.
Complementary Pair of Enantioselective Switchable
Organocatalysts. Chem. Sci. 2017, 8 (10), 7077–7081.
Blanco, V.; Leigh, D. A.; Marcos, V. Artificial Switchable
Catalysts. Chem. Soc. Rev. 2015, 44 (15), 5341–5370.
A
(9)
Russew, M.-M.; Hecht, S. Photoswitches: From Molecules to
Materials. Adv. Mater. 2010, 22 (31), 3348–3360.
(
(
10) Yang, Y.-W.; Sun, Y.-L.; Song, N. Switchable Host–Guest Systems
on Surfaces. Acc. Chem. Res. 2014, 47 (7), 1950–1960.
11) Karimi, M.; Sahandi Zangabad, P.; Baghaee-Ravari, S.; Ghazadeh,
M.; Mirshekari, H.; Hamblin, M. R. Smart Nanostructures for
Cargo Delivery: Uncaging and Activating by Light. J. Am. Chem.
Soc. 2017, 139 (13), 4584–4610.
12) Díaz-Moscoso, A.; Ballester, P. Light-Responsive Molecular
Containers. Chem. Commun. 2017, 53 (34), 4635–4652.
13) Natali, M.; Giordani, S. Molecular Switches as Photocontrollable
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(
(
(
“
Smart” Receptors. Chem. Soc. Rev. 2012, 41 (10), 4010.
14) Lee, S.; Flood, A. H. Photoresponsive Receptors for Binding and
Releasing Anions. J. Phys. Org. Chem. 2013, 26 (2), 79–86.
2
2
66
tial applications may include ion transport, soft materials, or
(15) Valeur, B. Design Principles of Fluorescent Molecular Sensors for
2
,3
stimuli-responsive systems, where the photo-induced catch and
release of ions, or system (dis)assembly, are highly desirable. In
such systems, the incorporation of a photoresponsive heteroditop-
ic ON/OFF switch is still unprecedented.
Cation Recognition. Coord. Chem. Rev. 2000, 205 (1), 3–40.
(
(
16) Takeuchi, M.; Ikeda, M.; Sugasaki, A.; Shinkai, S. Molecular
Design of Artificial Molecular and Ion Recognition Systems with
Allosteric Guest Responses. Acc. Chem. Res. 2001, 34 (11), 865–
8
73.
17) Mulder, A.; Jukovic, A.; Lucas, L. N.; van Esch, J.; Feringa, B. L.;
Huskens, J.; Reinhoudt, D. N. A Dithienylethene-Tethered β-
Cyclodextrin Dimer as a Photoswitchable Host. Chem. Commun.
ASSOCIATED CONTENT
Supporting Information
2
002, No. 22, 2734–2735.
The Supporting Information is available free of charge on the
ACS Publications website at DOI: xxxxxxxxxxxx
General information, synthetic procedures, spectroscopic charac-
terization, titration data, photoisomerization details (PDF)
X-ray structure of E-1 (CIF)
X-ray structure of E-1·LiClO (CIF)
4
X-ray structure of E-1·NaI (CIF)
X-ray structure of E-1·KI (CIF)
(18) Gale, P. A.; Howe, E. N. W.; Wu, X. Anion Receptor Chemistry.
Chem 2016, 1 (3), 351–422.
(19) Busschaert, N.; Caltagirone, C.; Van Rossom, W.; Gale, P. A.
Applications of Supramolecular Anion Recognition. Chem. Rev.
2
015, 115 (15), 8038–8155.
(
20) Evans, N. H.; Beer, P. D. Advances in Anion Supramolecular
Chemistry: From Recognition to Chemical Applications. Angew.
Chemie Int. Ed. 2014, 53 (44), 11716–11754.
(21) Antonisse, M. M. G.; Reinhoudt, D. N. Neutral Anion Receptors:
Design and Application. Chem. Commun. 1998, No. 4, 443–448.
(22) Gale, P. A. From Anion Receptors to Transporters. Acc. Chem. Res.
2011, 44 (3), 216–226.
X-ray structure of E-1·NH
X-ray structure of E-1·NH
4
Br (CIF)
I (CIF)
4
X-ray structure of Z-1 (CIF)
(
23) He, Q.; Tu, P.; Sessler, J. L. Supramolecular Chemistry of Anionic
Dimers, Trimers, Tetramers, and Clusters. Chem 2018, 4 (1), 46–
AUTHOR INFORMATION
9
3.
(24) Steed, J. W. Coordination and Organometallic Compounds as
Corresponding Authors
Anion Receptors and Sensors. Chem. Soc. Rev. 2009, 38 (2), 506–
519.
E-mail: zkokan@irb.hr, mchmielewski@chem.uw.edu.pl
Notes
The authors declare no competing financial interests.
(25) Kim, S. K.; Sessler, J. L. Ion Pair Receptors. Chem. Soc. Rev. 2010,
39 (10), 3784.
(
26) McConnell, A. J.; Beer, P. D. Heteroditopic Receptors for Ion-Pair
Recognition. Angew. Chemie Int. Ed. 2012, 51 (21), 5052–5061.
27) Zakrzewski, M.; Kwietniewska, N.; Walczak, W.; Piątek, P. A
Non-Multimacrocyclic Heteroditopic Receptor That Cooperatively
Binds and Effectively Extracts KAcO Salt. Chem. Commun. 2018,
ACKNOWLEDGMENT
(
MCh gratefully acknowledges financial support from the Founda-
tion for Polish Science and European Economic Area through
Homing Programme.
5
4 (51), 7018–7021.
(
(
28) Tepper, R.; Schulze, B.; Bellstedt, P.; Heidler, J.; Görls, H.; Jäger,
M.; Schubert, U. S. Halogen-Bond-Based Cooperative Ion-Pair
Recognition by a Crown-Ether-Embedded 5-Iodo-1,2,3-Triazole.
Chem. Commun. 2017, 53 (14), 2260–2263.
29) Shin, J.; Hong, J.-H.; Ko, M.-S.; Cho, D.-G. Fluorescent and
Cooperative Ion Pair Receptor Based on Tolan for Na + (or Li + )
and HSO 4 −ꢀ: Logic AND Gate. Chem. Commun. 2017, 53 (83),
REFERENCES
(1)
Qu, D.-H.; Wang, Q.-C.; Zhang, Q.-W.; Ma, X.; Tian, H.
Photoresponsive Host–Guest Functional Systems. Chem. Rev. 2015,
1
15 (15), 7543–7588.
(
(
2)
3)
Yagai, S.; Kitamura, A. Recent Advances in Photoresponsive
Supramolecular Self-Assemblies. Chem. Soc. Rev. 2008, 37 (8),
1
1414–11417.
(
(
30) Karbarz, M.; Romański, J. Dual Sensing by Simple Heteroditopic
Salt Receptors Containing an Anthraquinone Unit. Inorg. Chem.
2016, 55 (7), 3616–3623.
1
520.
Yao, X.; Li, T.; Wang, J.; Ma, X.; Tian, H. Recent Progress in
Photoswitchable Supramolecular Self-Assembling Systems. Adv.
Opt. Mater. 2016, 4 (9), 1322–1349.
31) Jagleniec, D.; Siennicka, S.; Dobrzycki, Ł.; Karbarz, M.; Romański,
J. Recognition and Extraction of Sodium Chloride by
a
(4)
5)
Saha, S.; Stoddart, J. F. Photo-Driven Molecular Devices. Chem.
Soc. Rev. 2007, 36 (1), 77–92.
Erbas-Cakmak, S.; Leigh, D. A.; McTernan, C. T.; Nussbaumer, A.
L. Artificial Molecular Machines. Chem. Rev. 2015, 115 (18),
Squaramide-Based Ion Pair Receptor. Inorg. Chem. 2018, 57 (20),
12941–12952.
(
(
32) Ercolani, G. Assessment of Cooperativity in Self-Assembly. J. Am.
ACS Paragon Plus Environment