A. E. Koumbis, D. D. Chronopoulos / Tetrahedron Letters 46 (2005) 4353–4355
4355
properties to those reported in the literature.5b {For 1:
[a]D +0.9 (c 1.1, CCl4), lit.5b [a]D +0.9 (c 1.1, CCl4);
for 2: [a]D À0.8 (c 1, CCl4), lit.5b [a]D À0.9 (c 0.21,
CCl4)}.
L.; Fiorentino, M.; Rosa, A. Tetrahedron Lett. 1995, 36,
5831–5834; (f) Li, L. H.; Wang, D.; Chan, T. H.
Tetrahedron Lett. 1997, 38, 101–104; (g) Paolucci, C.;
Mazzini, C.; Fava, A. J. Org. Chem. 1995, 60, 169–175; (h)
Tsuboi, S.; Furutani, H.; Ansari, M. H.; Sakai, T.; Utaka,
M.; Takeda, A. J. Org. Chem. 1993, 58, 486–492; (i)
Brevet, J.-L.; Mori, K. Synthesis 1992, 1007–1012; (j)
Keinan, E.; Sinha, S. C.; Sinha-Bagchi, A.; Wang, Z.-M.;
Zhang, X.-L.; Sharpless, K. B. Tetrahedron Lett. 1992, 33,
6411–6414; (k) Ko, S. Y. Tetrahedron Lett. 1994, 35, 3601–
3604.
Although, the general synthetic scheme described above
furnished in a straightforward way the desired (+)-dis-
parlure and its enantiomer in almost 75% overall yields
from D- and L-erythrose precursors we were also keen to
explore the possibility of performing the same sequence
of reactions with minimum isolation of the intermedi-
ates. Indeed, we were pleased to observe that similar re-
sults were obtained without isolation of any of the
intermediates before epoxide formation. Thus, steps
(i)–(iv) were repeated with simple filtration of the result-
ing reaction mixtures through a short pad of silica gel in
each case. This was enough to remove organic and inor-
ganic salts as well as polar phosphorus entities. Accord-
ing to this modified experimental procedure, which
demands only two chromatographic separations, (+)-
disparlure and its enantiomer were obtained in overall
yields of more than 70%.
6. Jurenka, R. A.; Subchev, M.; Abad, J.-L.; Choi, M.-Y.;
Fabrias, G. P. Natl. Acad. Sci. U.S.A. 2003, 100, 809–814.
7. Sato, T.; Itoh, T.; Fujisawa, T. Tetrahedron Lett. 1987, 28,
5677–5680.
8. Otto, P. P. J. H. L.; Stein, F.; Van der Willigen Agric.
Ecosyst. Environ. 1988, 21, 121–123.
9. For some representative examples see: (a) Pikul, S.;
Kozlowska, M.; Jurczak, J. Tetrahedron Lett. 1987, 28,
2627–2628; (b) Achmatowicz, O.; Sadownik, A. J. Carbo-
hydr. Chem. 1985, 4, 435–440; (c) Kang, S.-K.; Kim, Y.-S.;
Lim, J.-S.; Kim, K.-S.; Kim, S.-G. Tetrahedron Lett. 1991,
32, 363–366; (d) Jigajinni, V. B.; Wightman, R. H.
Carbohydr. Res. 1986, 147, 145–148; (e) Tolstikov, A.
G.; Khakhalina, N. V.; Odinokov, V. N.; Khalilov, L. M.;
Spirikhin, L. V. Zh. Org. Khim. 1989, 25, 296–302.
10. Iwaki, S.; Marumo, S.; Saito, T.; Yamada, M.; Katagiri,
K. J. Am. Chem. Soc. 1974, 96, 7842–7844.
The work described in this article presents a short and
efficient synthetic approach toward the preparation of
(+)-disparlure 1 and its enantiomer 2 making use of
readily available, multigram quantities of D- and L-ery-
throse derived chirons and employing a common retro-
synthetic route. The overall yields for both targets are in
the range of 70–75% in a six-step sequence involving a
minimum number of purifications and relatively simple
and inexpensive procedures.
11. Mori, K.; Takigawa, T.; Matsui, M. Tetrahedron 1979, 35,
833–837.
12. For some representative examples see: (a) Achmatowicz,
O.; Sadownik, A.; Bielski, R. Polish J. Chem. 1985, 59,
553–564; (b) Dzhemilev, U. M.; Fakhretdinov, R. N.;
Telin, A. G.; Tolstikov, G. A.; Rafikov, S. R. Dokl. Akad.
Nauk SSSR 1983, 271, 361–365; (c) Tsuboi, S.; Yamafuji,
N.; Utaka, M. Tetrahedron: Asymmetry 1997, 8, 375–379;
(d) Refs. 5b,f,k,7,9b,10,11.
13. Graham, S. M.; Prestwich, G. D. J. Org. Chem. 1994, 59,
2956–2966.
References and notes
14. Prestwich, G. D.; Graham, S. M.; Kuo, J.-W.; Vogt, R. G.
J. Am. Chem. Soc. 1989, 111, 636–642.
15. Koumbis, A. E.; Dieti, K. M.; Vikentiou, M. G.; Gallos, J.
K. Tetrahedron Lett. 2003, 44, 2513–2516.
1. Bierl, B. A.; Collier, C. W. Science 1970, 170, 87–89.
2. (a) Henrick, C. A. Tetrahedron 1977, 33, 1845–1889; (b)
Rossi, R. Synthesis 1978, 413–434.
16. Thompson, D. K.; Hubert, C. N.; Wightman, R. H.
Tetrahedron 1993, 49, 3827–3840.
17. Z- and E-Isomers were formed in a ratio of ca. 2:1 as
3. Hansen, K. Physiol. Ent. 1984, 9, 9–18, and references
cited therein.
4. (a) Mori, K. Tetrahedron 1989, 45, 3233–3298; (b)
Fukusaki, E.; Satoda, S. J. Mol. Catal. B: Enzym. 1997,
257–269.
5. For recent publications see: (a) Fukusaki, E.; Satoda, S.;
Senda, S.; Omata, T. J. Biosci. Bioeng. 1999, 87, 103–104;
(b) Marshall, J. A.; Jablowonski, J. A.; Jiang, H. J. Org.
Chem. 1999, 64, 2152–2154; (c) Hu, S.; Jayaraman, S.;
Oehlschlager, A. C. J. Org. Chem. 1999, 64, 3719–3721; (d)
Sinha-Bagchi, A.; Sinha, S. C.; Keinan, E. Tetrahedron:
Asymmetry 1995, 6, 2889–2892; (e) Curci, R.; DÕAccolti,
1
determined from the H NMR spectra of their mixtures.
18. 1-Bromo-4-methylpentane is commercially available but
in our case we prepared it from the corresponding alcohol,
which is much cheaper.
1
19. It was not possible to determine their ratio by H NMR
spectroscopy.
20. (a) Kolb, H. C.; Sharpless, K. B. Tetrahedron 1992, 48,
10515–10530; (b) Sinha, S. C.; Sinha-Bagchi, A.; Keinan,
E. J. Org. Chem. 1993, 58, 7789–7796.