Enzymatic Activities of YybT
4. Bejerano-Sagie, M., Oppenheimer-Shaanan, Y., Berlatzky, I., Rouvinski,
A., Meyerovich, M., and Ben-Yehuda, S. (2006) Cell 125, 679–690
5. Witte, G., Hartung, S., Bu¨ttner, K., and Hopfner, K. P. (2008) Mol. Cell 30,
167–178
ATPases prior to the stimulation by small molecule or protein
partners (48). It is intriguing to speculate whether the PAS
domain may function as a sensor domain for perceiving and
transducing a signal to further stimulate the activity of the
GGDEF-based ATPase domain.
6. Ro¨mling, U. (2008) Sci. Signal 1, pe39
7. Aravind, L., and Koonin, E. V. (1998) Trends Biochem. Sci. 23, 17–19
8. Yamagata, A., Masui, R., Kakuta, Y., Kuramitsu, S., and Fukuyama, K.
(2001) Nucleic Acids Res. 29, 4617–4624
The nucleotide ppGpp has been known as the stringent alar-
mone that regulates RNA polymerase and other protein targets
for gene expression and other cellular activities during strin-
gent responses (49). The inhibition of the DHH/DHHA1 do-
main by ppGpp suggests a direct link between the ppGpp and
c-di-AMP signaling networks and implies that the local c-di-
AMP level will increase during stringent responses to starva-
tion and other stresses. The measured IC50 and KI values indi-
cate that the hydrolysis of c-di-AMP will be fully suppressed
during stringent response with the ppGpp level raised above 1
mM. Interestingly, the interference of the ppGpp and c-di-GMP
signaling networks has also been proposed recently (50, 51).
The inhibition of c-di-AMP hydrolysis by ppGpp may repre-
sent another example of cross-talking between two nucleotide
signaling networks.
9. Young, T. W., Kuhn, N. J., Wadeson, A., Ward, S., Burges, D., and Cooke,
G. D. (1998) Microbiology 144, 2563–2571
10. Fabrichniy, I. P., Lehtio¨, L., Tammenkoski, M., Zyryanov, A. B., Oksanen,
E., Baykov, A. A., Lahti, R., and Goldman, A. (2007) J. Biol. Chem. 282,
1422–1431
11. D’Angelo, A., Garzia, L., Andre´, A., Carotenuto, P., Aglio, V., Guardiola,
O., Arrigoni, G., Cossu, A., Palmieri, G., Aravind, L., and Zollo, M. (2004)
Cancer Cell 5, 137–149
12. Holland, L. M., O’Donnell, S. T., Ryjenkov, D. A., Gomelsky, L., Slater,
S. R., Fey, P. D., Gomelsky, M., and O’Gara, J. P. (2008) J. Bacteriol. 190,
5178–5189
13. Rao, F., Pasunooti, S., Ng, Y., Zhuo, W., Lim, L., Liu, A. W., and Liang, Z. X.
(2009) Anal. Biochem. 389, 138–142
14. Jensen, L. J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J.,
Doerks, T., Julien, P., Roth, A., Simonovic, M., Bork, P., and von Mering, C.
(2009) Nucleic Acids Res. 37, D412–416
In addition to the novel enzymatic activities exhibited by
YybT, the opposite effects of the ⌬disA and ⌬yybT mutation on
sporulation in the presence of a DNA-damaging agent point
toward contrasting roles played by the proteins in DNA damage
resistance. The higher sporulation efficiency for the ⌬yybT
mutant indicates that the mutant strain is more resistant
against DNA damage, whereas the acid resistance experiment
showed that the ⌬yybT mutant strain is more tolerant to acid
stress, consistent with the observation for the L. lactis mutant
(25). Because acid stress can also cause chromosomal DNA
damage in bacteria (52, 53), the observed acid and DNA damage
resistance may be highly related on the molecular level.
Together, the acid and DNA damage resistance exhibited by the
mutant suggest that YybT functions as a signaling protein for
coordinating stress sensing and cellular responses. Finally, con-
sidering that the DHH/DHHA1 domain of YybT is an efficient
c-di-AMP phosphodiesterase under in vitro conditions and
that the c-di-AMP synthesizing DisA is implicated in signaling
DNA damage (5), it is tempting to conclude that the effect of the
⌬yybT mutation is exerted through c-di-AMP. However, it
remains to be fully established in the future whether c-di-AMP
is truly a signaling messenger that regulates the phenotypes
associated with stress responses. The failure to detect c-di-
AMP in both the vegetative and sporulating B. subtilis cells
seems to hint that even if the cyclic nucleotide is at play, it may
only function at a local level.
15. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan,
P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R.,
Thompson, J. D., Gibson, T. J., and Higgins, D. G. (2007) Bioinformatics
23, 2947–2948
16. Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. (2006) Bioinformatics 22,
195–201
17. Ryjenkov, D. A., Tarutina, M., Moskvin, O. V., and Gomelsky, M. (2005) J.
Bacteriol. 187, 1792–1798
18. Rallu, F., Gruss, A., Ehrlich, S. D., and Maguin, E. (2000) Mol. Microbiol.
35, 517–528
19. Kobayashi, K., et al. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 4678–4683
20. Simm, R., Morr, M., Remminghorst, U., Andersson, M., and Ro¨mling, U.
(2009) Anal. Biochem. 386, 53–58
21. Mechold, U., Fang, G., Ngo, S., Ogryzko, V., and Danchin, A. (2007) Nu-
cleic Acids Res. 35, 4552–4561
22. Ugochukwu, E., Lovering, A. L., Mather, O. C., Young, T. W., and White,
S. A. (2007) J. Mol. Biol. 371, 1007–1021
23. Fabrichniy, I. P., Lehtio¨, L., Salminen, A., Zyryanov, A. B., Baykov, A. A.,
Lahti, R., and Goldman, A. (2004) Biochemistry 43, 14403–14411
24. Yamagata, A., Kakuta, Y., Masui, R., and Fukuyama, K. (2002) Proc. Natl.
Acad. Sci. U.S.A. 99, 5908–5912
25. Ruiz, A., Hurtado, C., Meireles Ribeiro, J., Sillero, A., and Gu¨nther Sillero,
M. A. (1989) J. Bacteriol. 171, 6703–6709
26. Plateau, P., Fromant, M., Kepes, F., and Blanquet, S. (1987) J. Bacteriol.
169, 419–422
27. Potrykus, K., and Cashel, M. (2008) Annu. Rev. Microbiol. 62, 35–51
28. Waldron, K. J., and Robinson, N. J. (2009) Nat. Rev. Microbiol. 7, 25–35
29. Mitic´, N., Smith, S. J., Neves, A., Guddat, L. W., Gahan, L. R., and Schenk,
G. (2006) Chem. Rev. 106, 3338–3363
30. Chan, C., Paul, R., Samoray, D., Amiot, N. C., Giese, B., Jenal, U., and
Schirmer, T. (2004) Proc. Natl. Acad. Sci. U.S.A. 101, 17084–17089
31. Paul, R., Abel, S., Wassmann, P., Beck, A., Heerklotz, H., and Jenal, U.
(2007) J. Biol. Chem. 282, 29170–29177
Acknowledgments—We thank Prof. K. Kobayashi for kindly providing
the wild type B. subtilis 168 and ⌬yybT mutant strains. We are also
grateful to Prof. Susana Geifman Shochat for generous support of this
work.
32. De, N., Pirruccello, M., Krasteva, P. V., Bae, N., Raghavan, R. V., and
Sondermann, H. (2008) PLoS Biol. 6, e67
33. Ikehara, K., Okada, H., Maeda, K., Ogura, A., and Sugae, K. (1984) J. Bio-
chem. 95, 895–897
34. Wendrich, T. M., and Marahiel, M. A. (1997) Mol. Microbiol. 26, 65–79
35. Srivatsan, A., and Wang, J. D. (2008) Curr. Opin. Microbiol. 11,
100–105
REFERENCES
1. Ro¨mling, U., Gomelsky, M., and Galperin, M. Y. (2005) Mol. Microbiol. 57,
629–639
36. Rao, F., Qi, Y., Chong, H. S., Kotaka, M., Li, B., Li, J., Lescar, J., Tang, K., and
Liang, Z. X. (2009) J. Bacteriol. 191, 4722–4731
2. Hengge, R. (2009) Nat. Rev. Microbiol. 7, 263–273
3. Galperin, M. Y., Nikolskaya, A. N., and Koonin, E. V. (2001) FEMS Micro- 37. Rao, F., Yang, Y., Qi, Y., and Liang, Z. X. (2008) J. Bacteriol. 190,
biol. Lett. 203, 11–21
3622–3631
JANUARY 1, 2010•VOLUME 285•NUMBER 1
JOURNAL OF BIOLOGICAL CHEMISTRY 481